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NEW METHODS OF LOAD-CARRYING CAPACITY PREDICTION
FOR THE ULTIMATELY COMPRESSED FRAME STRUCTURES

Amid acute problems that arise in the field of rocket and space technology, mechanical engineering, and
other fields and require a workable engineering solution, the problem of prediction and prevention of the
unpredicted collapse of the structural members of the structures subjected to loading is considered. Prediction
of the load-carrying capacity and residual life of the space frames during the long-term operation is based on
the analysis of the stress and strain state, using readings from the strain and displacement pickups installed
in the most loaded zones. In this case the yield strength of the structural material or the fatigue strength of
the material may be considered as the criterion of the maximum load. At the same time the loss of stability of
the compressed structural members used in the load-carrying thin-walled structures are among the potentially
dangerous failure modes. In these cases such failure occurs unexpectedly without any visible signs of change
in the initial geometry. Application of the adequate diagnostic techniques and methods of prediction of the
maximum loads under compression conditions will make it possible to avoid the structural failures. In this
case an assembly under test may be used for other purposes. To perform static strength testing, the rocket
and space companies use costly compartments of as-built dimension. Therefore, keeping compartments safe
solves an important problem of saving financial costs for hardware production. Nowadays this problem is
particularly acute when ground testing the new technology prototypes.

Key words: space frames, load-carrying members, stress and strain state, loss of stability, prediction of
the structural failure.

Ceped akmyaribHUX npobrem y pakemHo-KOCMIYHIU MEeXHIyi, @ MakoxX y cydacHOMY MauwuHobydysaHHi ma
8 IHWUX 2arnyssax, wo nompebyroms NpakmMuyHoO20 iHXeHepHO20 8UPIWEHHS, po3ansadaoms Mpo2HO3y8aHHs
ma 3ariobicaHHs1 He3arniaHo8aHOMYy PyUHY8aHHIO CUTOBUX efleMeHMIi8 HagaHmaXxeHUX KOHCmpYyKUit i criopyd.
[MpozaHo3y8aHHs1 Hecy4oi 30amHocmi i OCMamoYHO20 pecypcy rnpocmopo8uUx KOHCMPYKYil nid Yac mpuesasnor
ekcryamauii 8 yeli Yac rpyHmyembCcs Ha aHasisi HanpyxeHo-0eghopMo8aHo20 cmaHy 3 8UKOPUCMAaHHSIM r10-
Ka3zaHb 0amu4ukie deghopmayii ma dam4ukie nepemiujeHb y Halbinbw HagaHMaXeHUX 30Hax. Y maxkomy pasi
K Kpumepil epaHu4Ho O0MyCcmuUMO20 HaBaHMaXeHHsI MOXHa po3ansdamu 2paHuyro MiIUHHOCMI KOHCMPYK-
uitiHoeo mamepiany abo epaHuuro ymomu mamepiasny. Pazom 3 mum 8o xapakmepHux eudie nomeHyitiHO
Hebesne4yHo2o pyUHYy8aHHs Ha/lexXumbe empama cmilkocmi CMUCHEHUX CUlosux efieMeHmis, 8UKopucmosy-
8aHUX y HecCy4ux MOHKOCMIHHUX KOHCMPYKUisix. PylHyeaHHs1 8 makux eunadkax gidbysaembcsi parnmoeo, 3
8i0cymmHicmto 8UOUMUX O3HaK 3MiHU 8UXIOHOI eeomempuyHOI hopmu. 3acmocysaHHs 00CmosipHUX Memodie
OiaezHoCmMUKU ma crocobig npo2Ho3y8aHHs epaHuU4HO AornycmuMUX HagaHMaXeHb 8 yMogax CMUCHeHHs1 0o-
380/1UMb Mid Yac MIiYHICHUX 8unpobysaHb He rpu3soOUMU KOHCMPYKUito Ao pylHy8aHHS. Y makomy pasi eu-
daembCsi MOXIUBUM 8UKOpUcmogygamu eurnpobysaHe ckradaHHs Ons iHWuUX yined. Y pakemHOo-KOCMIYHIU
mexHiui 0ns cmamu4yHuUXx eunpobysaHb Ha MiUHiCmb 8UKOpUCMO8YHMb Oopoai 8i0CiKU HamypHUX PO3MIpis.
Tomy 36epexxeHHs 8iOciKie uinumu supiwlye saxnuge 3agdaHHs eKOHOMII ghiHaHCO8UX sumpam Ha 8u2omos-
JIeHHsI MamepianbHOi YacmuHu. Y el Yac ysi npobnema ocobnugo akmyarsbHa rid Yyac Ha3eMHO20 8idnpaufo-
B8aHHS 3pa3Kie HOBOI MEXHIKU.

KntouoBi crnoBa: npocTopoBi KOHCTPYKLT, CUNOBI eneMeHTu, HanpyxeHo-gedopMoBaHUN CTaH, BTpaTa
CTINKOCTi, NPOrHO3yBaHHS PYMHYBAHHS KOHCTPYKLi.

Introduction

The authors of the work [1] emphasize the
extraordinary complexity of loss of stability of
shell structures. On this matter the expression
by D. Bushnell, a famous American scientist
in the field of deformable systems mechanics,
is cited, who called loss of stability the «pitfall
for designers». C. Truesdell, another American

scientist who is known for his works in the
field of the continuum mechanics, also noted
on this matter «When we try, however, to
investigate stability in general, it turns out that
not only is it hard to investigate, but primarily
it is hard to define it accurately»' ([2], p. 350).
On the merits of the problem, the viewpoints
of American and National scientists are in line.
Yu. Rabotnov pointed out that the known

! Translation from Russian.
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classical Euler-Lagrange approach «...settles
a problem not of stability in the literal sense of
word but of a possibility of existence of the two
different forms of balance at the same value of
the force» ([3], p. 120). V. Bolotin had the same
opinion [4]: «...Euler’s method in Theory of
Elastic Stability does not contain, as a matter
of fact, stability... existence of a branch point
is neither necessary nor sufficient condition of
change of stability». An appropriate physical and
mathematical model has not been developed so
far, because the mechanism of loss of stability
has not been adequately defined yet. The
trusted proactive prediction of the thin-walled
structure failure requires a stability analysis to
be theoretically well-founded with no empirical
corrections. Longstanding practice of using
the empirical coefficients in the engineering
stability analysis holds back the development
of ideas on the physical nature of stability loss.
From the conceptual standpoint, another
argument in favor of performing a complete
analysis of the stability problem is the fact
that it has been more than 270 years now since
Euler, in 1744, developed for the first time
' El
LZ

the classical formula 7% = to define the

buckling compressive force of a straight bar of
L length, while bar ends are pivot joined (where
E —modulus of elasticity of the structural
material, /— moment of inertia of the cross
section of the bar in the plane of the lowest
bending stiffness). However, a theoretical
solution has not been obtained neither for
an elongated straight column with an end
support (Fig. 1), nor for other essentially
important engineering problems arising due
to loss of stability in the large. A distinctive
feature of loss of stability in the large is a
spontaneous occurrence of the transverse
mechanical impulse that in the absence of
imposed transverse force provides the sudden
crippling of the extremely compressed elastic
structural members that is followed by final
deflection and dynamic effect. The elongated
straight metal column with flat ends without
connections given in Fig. 1 can serve as a clear
and powerful example of dynamic effect with
final deflection at the time of sudden crippling.
Such columns under compression conditions
find practical application for erection and
construction operations.

Fig. 1. The diagram of the support column under load: a — an initial position of the column in the state
of subcritical compression; b — a supposed bending form after the loss of stability in the small (with no dynamic effect);
c — loss of stability in the large (with dynamic effect)
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The column with elastic properties set
between two stiffened plates and loaded
with axial compressive force 7" by means of
a movable upper or bottom plate is under
consideration. The column may be subjected
to axial compression between two fixed plates,
providing uniform heating. In this case it
necessitates solving the stability problem of
the column taking into account the thermal
deformation. The examples illustrate the
columns ends, which have an extended support
area with dimension of 2e in the plane of the
Figure. The thickness of the normal profile of
the column in the same plane of the Figure
is characterized by the parameter 4 =2c. In
the plane, perpendicular to the Figure, the
adequate dimensions of the column profile and
the support area are characterized by the much
greater value of b which provides crippling of
the elastic column in the plane of the Figure.
Thus the cross section of the column under

consideration is square and characterized by the
thickness of # = 2¢ and width of b, (b >> 2c¢).

Problem statement

The technical and scientific books on
mechanics of deformable systems do not
present a theoretical method for determining
the critical load for the considered case of axial
loading applied to the elastic support column of
regular geometry. Due to lack of the theoretical
justification for loss of stability in the large in
the ultimately compressed straight bar with flat
ends, there is no an appropriate design formula
to determine the critical value of the axial force
to be used in the engineering practice.

To solve the problem of stability in the small,
the Euler formulation allows the occurrence for
one reason or another of the small deflections
w(x), which provides the use of a homogeneous
differential equation of the column bending in
the plane of the smallest stiffness (in the plane
of Fig. 1).

4 2
d'w T dw

EI
dx! dx?

=0. (1)

Arbitrarily small deflections can presumably
be considered at a loss of stability of the column
according to the diagram given in Fig. 1, b,
which would correspond to the stiff restraint of
the ends. With the suitable boundary condition,
the solution of the quoted differential equation

determines the wvalue of the critical force
. 4Am’EIl , ,
= o that is four times the value of the

cr

Euler force T* with pivoted connection of the
ends. If stability is lost according to the diagram
in Fig. 1, ¢, than differential equation (1) to
determine the moment of the column sudden
crippling is not applicable, since the restoring
moment of the finite quantity 7* holds back the
small deflections in the bending form. However,
from the standpoint of classical mechanics [5],
the column with an end support has to cripple
according to the diagram in Fig. 1, b, and hence
cannot lose its stability at the axial force value
4’ El

less than T i = 2 which would contradict

the experimental data. Under actual conditions,
the sudden crippling of the considered metal
column with the end support that have limited
linear dimensions occurs according to the

diagram in Fig. 1, ¢ at the axial force value

Tf < TC < 1; r The results of the static tests

of axial compression of the elongated frame
samples with flat ends are shown below.

To obtain the experimental data for the
loading diagram under consideration, using the
sheet of rolled steel, material — Steel 20, the
static test laboratory produced the flat frame
samples of the regular geometry. The samples
had square cross section with width of
b =50 mm. The level of actual irregularities
was defined by the technological procedure
during the manufacture of the steel sheet. The
visual signs of the samples deviation from
the original straight form were not found.
The elongated samples of the first type had
the pivoted support ends under the axial
compression. For that reason the ends of the
samples were beveled that is they had sharp
edges (e = 0, Fig. 1, a). The first type samples
had the following parameters: L =450 mm,
b =50 mm; 2¢ = h = 8.25 mm. The material
elasticity modulus was FE =2.1-10°kg/cm?.
In this case the design value of Euler’s force
was 7%= 2390 kgf. The results obtained under
the static tests of the two samples showed the
following values of critical force: 2537 kgf;
2574 kgf. The axial force was measured by
the strain gauge force sensor TB-25. The axial
displacements of the loaded bar ends were
measured by the strain gauge displacement
sensor JII1-10.
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Slight differences between the experimental
values of critical force and the design value of
Euler’s force ~10 % (6 % and 8 %) prove the
adequacy of the stability calculation method in
the Euler formulation (loss of stability in the
small) with the pivoted support of the straight
bar ends, and in the case of the pivoted support
of the elongated metal column as well. The
calculation method with the loss of stability in
the small in the Euler-Lagrange formulation is
widely used to calculate the critical load for thin-
walled members, including shell structures. A
relevant value of the critical load for the shell is
referred to as «upper» critical load. Under actual
conditions when the static load is applied to the
structures of as-built dimensions with cylindrical
and spherical shells that have actual irregularities,
loss of stability in the large occurs at much less
(three—four times) axial compressive loads in
comparison with the upper critical load. Thus, as
noted above, the empiric coefficients are used in
the engineering practice of the stability analysis.
To implement loss of stability in the large with
the dynamic effect of buckling in terms of the
one-dimensional problem, the two samples
of the second type with the same geometrical
dimensions as the first type were additionally
manufactured. Yet the ends of the straight
samples were flat with the dimensions of 2e = 4,
(b = 50 mm). Therefore the opportunity offered
the axial compression by the stiffened plates
according to the diagram shown in Fig. 1, a.
When the samples with the flat ends lost their
stability, the deflections were formed according
to the diagram in Fig. 1, c. According to the
test data, the following values of the critical
axial force were obtained for the two samples:
5447 kgf and 6478 kgf. The excess ratio of the
critical axial force value in comparison with
Euler force 7% = 2390 kgf at the pivoted support
in this case is 2.28 and 2.7, respectively. The third
type of the sample was manufactured of greater
length (L = 540 mm) and extended support area
at the end with the parameter 2e =12.3 mm,
(2e =1.5h, b = 50 mm). The thickness of the
cross section: £ = 8.3 mm. The axial force was
loaded continuously by the movable stiffened
plate up to the sudden buckling at the crippling
of the bar.

As a result the sample took the curved
shape according to Fig. 1, c. Loss of stability
resulted at the axial force 7 = 4400 kgf that
was 2.59 times greater than the design value of

Euler force (7 = 1700 kgf). Such an essential
difference of the critical force under the end
support condition from the Euler force value
at the pivoted support requires theoretical
substantiation. At the same time, the axial force
value T = 4400 kgf is significantly lower than

the design value of critical force 7, r = 6800 kgf
at the rigidly restrained ends of the sample bar
under consideration.

The technical books that introduce some
researches in the field of strength and stability
do not substantiate the mechanism of crippling
at loss of stability in the large. Analyzing the
compressive force loaded to the straight bar with
the flat end, V. Feodosyev, well-known specialist
inthefield of stability ofelastic systemstates: « The
proposed problem touches upon fundamentally
new problems on stability and cannot be solved
by standard methods» ([5], p. 260). To make sure
of it, the author studies the design diagram of
transverse-longitudinal bending, where from the
very beginning of loading the moment 7%, where
e = ¢, was applied to the bent bar. However, the
problem with such formulation does not obtain
the required result, because «it is impossible to
catch a critical transition from the rectilinear
form of equilibrium to the curvilinear form
of equilibrium». In practice of the theoretical
calculation of shell structures the «method of
non-ideality» is used, where moment subcritical
state in the nonlinear formulation is taken into
account. This method also does not help solving
the problems of stability in the large, among
which there is a problem of loss of stability of
the support column according to the diagram
in Fig. 1, c. Since in this case the considered
column has no initial deflection, the sudden
crippling occurs in the absence of the moment
subcritical state.

The analysis in terms of the one-dimensional
problem with allowance for the experimental
data proves that the stability problem can
be solved by finding out the physical nature
of the sudden crippling with transverse
dynamic impulse in the absence of the external
transverse force. The article [6] contains the
investigations on how the initial irregularities
level affects the intensity of the sudden crippling
of the ultimately compressed bar at the given
boundary conditions according to the classical
diagram: the pivoted support, rigid restraint
of the ends. It was theoretically established
that in this case the intensity of the transverse
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mechanical impulse and the appropriate value
of the pitch of the macro deflection with loss
of stability of the compressed elastic bar are
defined by the elastic deformation energy of
the bending accumulated within the subcritical
phase of loading due to the irregularities.

1.Mechanism of the transverse mechanical
impulse formation with loss of stability in
the large

With the loss of stability of the elastic straight
bar with the flat ends, loaded with the axial force
by the stiffened plate according to the diagram
in Fig. 1, the final deflections that occur at the
sudden crippling of the bar in accordance with
the diagram in Fig. 1, ¢ are considered. This
process of spontaneous formation of deflections
is characterized by loss of stability in the large
and is followed by the transverse dynamic
impulse — «buckling».

It has been noted before that the physical
nature of the sudden crippling with the
transverse dynamic impulse in the absence of
the imposed transverse force is still unknown.

2
With the Euler force T = anl,
considered column and the bar with the flat
ends under the axial compression are still
straight, which is proved by the experiments
conducted on the prototypes. In this case the
sufficiently small deflections w(x) are prevented
by the restoring moment of finite quantity
T (Fig. 1, ¢). In the process of spontaneous
crippling the considered bar shall go through
the intermediate position, where there is no
static equilibrium. Therefore, it is impossible
to determine the coordinates of the space
position of the bar particles in such conditions.
Essentially, it means that the coordinate
location of the particles at the sufficiently small
deflections within the considered process of
the spontaneous crippling of the ultimately
compressed bar remains undefined. As a
result the Heisenberg uncertainty principle is
implemented at the macro level. The quantum
mechanics deals with elementary particles
at the microlevel in the state of uncertainty.
According to the uncertainty principle «the
coordinates and momentum of particle cannot
simultaneously take on accurate values». Taking
into account the analysis it can be concluded
that the ultimately compressed bar with flat ends

the

in the process of sudden crippling in the state
of uncertainty assumes the wave properties at
the macro level. In this case, according to the
quantum mechanics, in order to provide the
spontaneous crippling of the bar with the loss
of stability in the large, the energy — momentum
relation is required.

With certain value of the axial force 7 >T*,

the ultimately compressed bar with flat ends loses
stability and forms the finite deflections with
amplitude of the order of the sample thickness
h. From the energy standpoint, before crippling
takes place, the bar assumes potential energy

of the subcritical compression characterized by
2

. I’L .
threshold level Th = —<—. In the closing phase
2EF

of the sudden crippling, the bar shifts from its
uncertainty state to the new position of static
equilibrium in the bent form (Fig. 1, c). In this
case, the static equilibrium is provided in the
condition of the pivoted support of the flat ends
of the bent bar, as it is shown in Fig. 1, c. After
crippling, the axial force action is determined
by the lower value which equals to Euler force

2
Tl:nEI

L2

that corresponds to the proper V%lue
l .
2EF
According to the classical solution [7], the
deflection under such conditions is characterized

of the axial force potential energy Th, =

by a half wave sine curve w' = f~ sin>. The

design diagram of the static equilibrium at the
pivoted connection is implemented with the
value of deflection amplitude of f~ >h=2c.
In such conditions, the action of the restoring
moment 7% is eliminated.

The position of the static equilibrium of
the bar in the bent state is characterized by the
formative energy of the elastic deformation of
the bend. To determine the formative energy
of the bend, the classical formula is used

1 ¢ d*w ’
E =—FEI
2 '([( dxzj

analysis the energy of bending deformation £,

dx. As follows from the

must be created by the transverse mechanical
impulse, required to overcome the energy
hump, caused in this case by the restoring
moment (7 )e. It requires the relevant energy
that in this process is determined by the relation

At === (1. (1)}
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It should be noted that the mechanism of
transforming the potential energy AT h; into
the transverse mechanical impulse requires
the physical substantiation. The articles [8],
[9] contain the proper physical substantiation
in terms of the symmetry principle of physical
phenomena that deals with the idea of the
intrinsic space of the deformable system. Taking
elastic bar under the axial force compression as
an example, the scientific and technical books
for the first time theoretically established the
phenomenon of initiation of bending within
the bar’s eigenspace. Eigenspace bending of
the ultimately compressed elastic bar as «a
trigger» is a crucial factor in the spontaneous
occurrence of the transverse mechanical
impulse when stability is lost in the large. The
energy balance in this process corresponds to
the classical energy conservation law according
to the equation

L > (wEIY | d*w
N

The right part of the equation (2) indicates the
formative energy of the bend E. In integrating
the right part, the above expression for the bend

w=f smT is used. In the static equilibrium

of the bent bar with the flat end, the minimum
value of the formative energy at which the
amplitude of the specified bend is determined
by the bar thickness f/*= 4 is considered. Taking
into account the assumed indication, the right

part of the equation (2) in the result of the
4 2

. L h
integration is expressed as . After the

proper transformations the axial force 7 in
the equation (2) is considered as an unknown
parameter. In this case the critical value of the
axial force of the ultimately compressed bar
with the flat end is determined by the formula

. TEI | I

T = —+1. 3
cr L2 212 ( )

Herei =, /%7 —radius of inertia of the cross

section of the bar with F = bh area.

The formula (3) was used for the analysis
of the results of the static stability tests of the
bar prototypes under the axial compression.

Since the cross section of the samples was
square-formed with the radius of inertia of

h
[ =——-, the formula (3) in this case transforms
243

into 7 =2.65T".

Coefficient k=3 is used in the specified
expression to determine the critical value of
the axial force for the bar, column with round
cross-section.

The samples with square cross-section
were manufactured in various forms of the end
support:

1. To eliminate the influence of the end
support and provide the pivoted support under
the loss of stability of the prototype, the ends
of the samples were beveled (e = 0). As follows
from the conducted analysis, the critical value
of the axial force in accordance with the
experimental data in this case conforms to the

design value that equals the value of Euler
2

force X ! with pivoted joint of the ends of

the centrally-compressed bar with length of
L, =450 mm, L, = 540 mm. The axial force was
loaded in vertical and horizontal positions with
no support of the prototypes on the horizontal
base.

2. The ends of the prototypes are made
flat (2e = 1) with length of L =450 mm. The
results of the static stability tests under the axial
compression of prototypes with thickness of 4
in quantity of 9 pieces are presented in Table 1.
The limiting value of axial force according
to the experimental data is designated by the
parameter T The critical value of the axial

force is demgnated by the parameter T ., and

calculated according to the formula (3). The
degree of conformity of the experimental data
with the theoretical value of critical force is

characterized by the coefficient of stability
li

k= 7:’{: presented in Table 1.

The length change of the compressed
prototype 1in accordance with test results
is designated by the parameter AL. The
theoretical value of the initial length change of
the ultimately compressed prototype with the
regular geometry and length of L =45.0 cm

li
L
is calculated from the formula AL = gFO’
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where E=2.110° kg/cm? is the material
modulus of elasticity, ' = bh is the area of the
cross section of the prototype with the width
of b=5.0 cm.

3. The flat ends of the bars are made with the
extended support pad (Fig. 1) in two options:
2e=1.5h, 2e =2.7h. The critical value of the
axial force is designated by the parameter 7. r
and calculated from the formula (3). The results

of the static stability of the prototypes with the
width % in quantity of 8 pieces are presented in
Table 2. The Table uses designations assumed in
Table 1. The prototypes in quantity of 6 pieces
(items 1-6) with length of L =450 mm.
The two prototypes (items 7-8, Table 2) with
width #=8 mm with the initial length of
L, = 540 mm.

Table 1
Loading the prototypes with flat ends with compression axial force T ; (2e=h, Fig. 1)
li T
No h, mm o’ AL, mm AL, mm k=-< Note
tonforce T,
1 7.7 5.1 0.42 0.28 0.99 . .
2 7.8 5.68 0.55 0.3 11 Vertical loading
, = 45cm
3 7.8 5.19 0.50 0.3 1.0
4 7.7 4.53 0.96 0.28 0.88
5 7.8 4.94 0.97 0.27 0.95
6 7.8 4.43 1.02 0.24 0.86 Horizontal loading
with no support on
7 8.25 6.48 14 0.33 0.98 the plane Z, = 45 cm
8 8.25 5.45 1.33 0.28 0.86
9 8.25 6.03 1.4 0.31 0.95
Table 2
Loading the prototypes with the extended support pads of 2e size with the compression
axial force T, (Fig. 1)
af
Tll- Tli
No h, mm o’ AL, mm AL, mm k=-4 Note
tonforce T,
1 3.6 0.485 0.43 0.06 0.92 2¢=10 mm
2 3.6 0.487 0.7 0.06 0.92 2¢=15mm
3 7.8 4.57 0.68 0.25 0.88 2e=12.3 mm
4 7.8 4.9 0.52 0.27 0.95 2e=12.3 mm
5 7.8 5.0 0.49 0.27 0.97 2¢=21.9 mm
6 8.0 5.25 0.65 0.28 0.90 2¢=21.9 mm
7 8.3 4.4 0.9 0.27 0.98 2e=12.3 mm
8 8.3 5.3 0.7 0.33 1.18 2¢=21.9 mm

The analysis results, presented in Tables 1
and 2, indicate the conformity of the
experimental values of the axial force at the
sudden crippling of the ultimately compressed
elastic prototypes with the theoretical
value of the critical force, calculated by the
formula (3).

The crucial factor at the crippling of the
prototypes with extended support pad is the
prototype thickness /4 used in the design
formula (3). The upsizing of the support pad
characterized by the parameter e > & (Fig. 1)
hardly leads to the increase in the critical
value of the axial force, which conforms
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to Saint-Venant’s principle in the edge effect
analysis in the strength of material method. The
maximum difference between the experimental
data and the design values of the axial force
under the loss of stability of the prototypes is
12-14 % downward axial force and 10-18 %
upward axial force. Under the static loading
of the full-scale compartment load-bearing
members by the rocketry and other vehicles
structures, the value of the stability coefficient
k is within the scatter band £15 %.

This section presents the solution of the
loss of stability problem in the large in one-
dimensional formulation based on the example
of the elastic metal bar with flat ends. The
energy criterion deals with the inner energy that
is a certain part of the potential energy of the
subcritical compression. The same approach
should be used for analyzing loss of stability
in the small of the centrally compressed
straight bar, the pivoted ends of which are in
fixed position during crippling. This case is
considered in the engineering analysis practice
under the thermal deformation of the heated
metal bar.

2. Mechanism of deflections formation in
the problem of stability of the straight bar
subjected to heating

The below research deals with the following
feature: under the loss of stability in the small
without the dynamic effect, the crippling with
small macro deflection along the main bend
shape can be provided not only by the continued
loading of the external force T, but in some
isolated cases due to the axial deformation
caused by the thermal effect when heating the
bar. The crippling of the elastic bar with the
length of L under the uniform heating up to
the specific temperature can be considered as
an example of «an isolated case». The pivoted
ends connected to the completely stiffened and
fixed supports [7] is under consideration.

The problem of stability of the heated bar
is solved with the use of the homogenous
differential equation (1) taking into account the
internal force of compression N(f) = T due to
the thermal deformation in the absence of the
axial displacement of the ends. According to
the Euler—Lagrange concept, it is suggested
that the centrally compressed straight bar
made of homogeneous material with elastic

properties obtains arbitrarily small deflection
w(x) unexpectedly occuring by any reason.
The problem of stability in the small, using
in this case the differential equation of static
equilibrium (1) is solved with such assumption
in the classical formulation. The classical
approach also suggests that the crippling is
accompanied with the continuous loading
by the external force T that works along the
axial displacement of the bar end. The work of
force T along the axial displacement of the end
provides the bend deformation of material fibers
and the appropriate deflection of the bar. When
the deflection of the bar w(x) occurs, the work of
the external force 7 transforms into the energy
of the bend elastic deformation determined
2
dx j dx. Under

by the formula U _EEI I (

the loss of stability of the heated bar with the
pivoted ends fixed, the fundamentally different
formation mechanism for the energy of the bend
elastic deformation is realized.

For the first time the articles [6, 8, 10]
established that the crucial factor of arbitrarily
small deflections w(x) occurring under the
loss of stability of the thin-walled structures
are weak disturbances at the level of the
ambient noise (the vibrations of atmospheric
air, acoustical pressure, emanating from
weak sources of noise, weak vibrations of
a loader). In conditions of small unforeseen
environmental effects, the initiation of the
arbitrarily macro deflections in the ultimately
compressed deformable system becomes
possible at zero value of the unit structural
bending stiffness, that is to say under the «zero
stiffness effect». While the pivoted support
of the elastic bar the appropriate stiftness [6]

with virtual deflections ow (x)=5f, sin%

with number of half-waves » in the subcritical

loading phase is defined by the expression
2_2 2_2

C :% ﬂ—N . Parameter N as the
"L L

axial force is determined by the mechanical

stress of the axial compression o, according

to the relation N =0 F. At-C =0 the actual
deflection w(x) = f'sin %, as the most probable

one with the amplitude f'of one half-wave of the
sine curve (n = 1), corresponds to the minimum
value of the parameter N.
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To realize the possible, virtual deflection
o w(x) with the main bend shape into the actual
arbitrarily small deflection w(x), the potential
energy of the axial deformation is used under
the thermal effect during the heating of the
elastic bar.

In the case under consideration the potential
energy of the subcritical compression is
determined by the internal force N =E FaAt
with temperature increase by At degrees with
the linear expansion coefficient a. Value of the
modulus of elasticity £ is defined, taking into
account the maximum attained temperature
during the bar heating. The elongation of the
heated bar in the condition of fixed supports
is ruled out. However, with the temperature
increase the potential energy of the subcritical
compression is created in the elastic bar. For
the straight metal bar with length of L and cross
section area F, the value of the relevant energy
P of the subcritical compression is determined

) 1
by the expression P = EazAtzEtFL.
It was established above that the occurrence

of'the arbitrarily small deflection w(x) = f'sin %

is possible in the «zero stiffness effect» of the
ultimately compressed bar. In the process of
crippling the ultimately compressed bar gets
length increment, determined by the formula

L 2
A= lj'(d_WJ dx .
29\ dx
As a result of integration the increment A is

2
written down as A = :_L f* characterized by the

valueofthesecond orderofvanishing. Thelength
increment of the bar causes the degradation
of potential energy of compression. In this
case the corresponding energy degradation
of compression is determined by the value of
the second order of vanishing according to
the expression 0P = PA. The considered axial
force P (which equals to the internal force N)
acts in the end sections of the heated bar fixed
supports.

At the same time, it is necessary to take into
account the energy of the elastic deformations

d*w
dx?

by the deflection w(x)= f sin%. As a result

2
1 L
of the bend U = EEz] I( J dx that is caused
0

of integration the bending energy is written
4

down as U = n4L3t 7 that is also determined

by the value of the second order of vanishing.
According to the energy conservation law,
the use of the equality PA =U is based on the
energy principle. The energy balance in such
process corresponds to the equation
n ., WEI ,

iy 4 4r 7 @)
From the equation (4) follows the expression

of the axial force P that determines the critical

force of the axial compression that equals to the
2
t

L2
the equality P = N is true, where N = E FaAt,
the maximum value of the temperature
increment under the loss of stability of the heated

bar with the pivoted support is determined from
2

L As aresult the

classical value of Euler force T° = . Since

the assumption E FaAt =

LZ
relevant formula is written down as
2
'l
max At = . 5
al’F ®)

The observation and experience indicate
that the crippling of the uniformly heated bar
occurs in the absence of the transverse dynamic
impulse, which is typical for the loss of stability
in the small.

As follows from the conducted studies on
the stability of the column with flat ends, the
formula to determine the limiting value of the
temperature increment of the heated column
can be expressed in the similar manner

2 2

nl |h
max At =———,|—+1. 6
al’F \ 2/ ©)

Conclusions

The mathematic model approximation of
the load-carrying capacity prediction of the
ultimately compressed structural members in
the frames is stated. For the first time in the
field of mechanics of deformable systems the
problem of stability in the large, characterized
by the sudden formation of the deflections in
finite quantities with mechanical impulse, has
been solved on the basis of the nonstandard
approach. The theoretically grounded design
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formulae have been obtained to determine the
critical force under the axial compression of
the column and bar with flat ends under the
normal temperature and during heating up to
the limiting temperature.

Using the prototypes under the normal
temperature, the critical values of the axial force
have been found for two options of support pads
on the flat ends. The experimental data, shown
in Tables, conform satisfactorily to the design
values of critical force of the axial compression
in the elastic region.
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