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NEW METHODS OF LOAD-CARRYING CAPACITY PREDICTION
FOR THE ULTIMATELY COMPRESSED FRAME STRUCTURES

Amid acute problems that arise in the field of rocket and space technology, mechanical engineering, and 
other fields and require a workable engineering solution, the problem of prediction and prevention of the 
unpredicted collapse of the structural members of the structures subjected to loading is considered. Prediction 
of the load-carrying capacity and residual life of the space frames during the long-term operation is based on 
the analysis of the stress and strain state, using readings from the strain and displacement pickups installed 
in the most loaded zones. In this case the yield strength of the structural material or the fatigue strength of 
the material may be considered as the criterion of the maximum load. At the same time the loss of stability of 
the compressed structural members used in the load-carrying thin-walled structures are among the potentially 
dangerous failure modes. In these cases such failure occurs unexpectedly without any visible signs of change 
in the initial geometry. Application of the adequate diagnostic techniques and methods of prediction of the 
maximum loads under compression conditions will make it possible to avoid the structural failures. In this 
case an assembly under test may be used for other purposes. To perform static strength testing, the rocket 
and space companies use costly compartments of as-built dimension. Therefore, keeping compartments safe 
solves an important problem of saving financial costs for hardware production. Nowadays this problem is 
particularly acute when ground testing the new technology prototypes.

Key words: space frames, load-carrying members, stress and strain state, loss of stability, prediction of 
the structural failure.

Серед актуальних проблем у ракетно-космічній техніці, а також у сучасному машинобудуванні та 
в інших галузях, що потребують практичного інженерного вирішення, розглядають прогнозування 
та запобігання незапланованому руйнуванню силових елементів навантажених конструкцій і споруд. 
Прогнозування несучої здатності й остаточного ресурсу просторових конструкцій під час тривалої 
експлуатації в цей час ґрунтується на аналізі напружено-деформованого стану з використанням по-
казань датчиків деформації та датчиків переміщень у найбільш навантажених зонах. У такому разі 
як критерій гранично допустимого навантаження можна розглядати границю плинності конструк-
ційного матеріалу або границю утоми матеріалу. Разом з тим до характерних видів потенційно 
небезпечного руйнування належить втрата стійкості стиснених силових елементів, використову-
ваних у несучих тонкостінних конструкціях. Руйнування в таких випадках відбувається раптово, з 
відсутністю видимих ознак зміни вихідної геометричної форми. Застосування достовірних методів 
діагностики та способів прогнозування гранично допустимих навантажень в умовах стиснення до-
зволить під час міцнісних випробувань не призводити конструкцію до руйнування. У такому разі ви-
дається можливим використовувати випробуване складання для інших цілей. У ракетно-космічній 
техніці для статичних випробувань на міцність використовують дорогі відсіки натурних розмірів. 
Тому збереження відсіків цілими вирішує важливе завдання економії фінансових витрат на виготов-
лення матеріальної частини. У цей час ця проблема особливо актуальна під час наземного відпрацю-
вання зразків нової техніки.

Ключові слова: просторові конструкції, силові елементи, напружено-деформований стан, втрата 
стійкості, прогнозування руйнування конструкції.

Introduction

The authors of the work [1] emphasize the 
extraordinary complexity of loss of stability of 
shell structures. On this matter the expression 
by D. Bushnell, a famous American scientist 
in the field of deformable systems mechanics, 
is cited, who called loss of stability the «pitfall 
for designers». C. Truesdell, another American 

scientist who is known for his works in the 
field of the continuum mechanics, also noted 
on this matter «When we try, however, to 
investigate stability in general, it turns out that 
not only is it hard to investigate, but primarily 
it is hard to define it accurately»1 ([2], p. 350). 
On the merits of the problem, the viewpoints 
of American and National scientists are in line. 
Yu.  Rabotnov pointed out that the known 

1 Translation from Russian.
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classical Euler-Lagrange approach «…settles 
a problem not of stability in the literal sense of 
word but of a possibility of existence of the two 
different forms of balance at the same value of 
the force» ([3], p. 120). V. Bolotin had the same 
opinion [4]: «…Euler’s method in Theory of 
Elastic Stability does not contain, as a matter 
of fact, stability… existence of a branch point 
is neither necessary nor sufficient condition of 
change of stability». An appropriate physical and 
mathematical model has not been developed so 
far, because the mechanism of loss of stability 
has not been adequately defined yet. The 
trusted proactive prediction of the thin-walled 
structure failure requires a stability analysis to 
be theoretically well-founded with no empirical 
corrections. Longstanding practice of using 
the empirical coefficients in the engineering 
stability analysis holds back the development 
of ideas on the physical nature of stability loss.

From the conceptual standpoint, another 
argument in favor of performing a complete 
analysis of the stability problem is the fact 
that it has been more than 270 years now since 
Euler, in 1744, developed for the first time 

the classical formula  to define the  

buckling compressive force of a straight bar of 
L length, while bar ends are pivot joined (where 
E – modulus of elasticity of the structural 
material, I – moment of inertia of the cross 
section of the bar in the plane of the lowest 
bending stiffness). However, a theoretical 
solution has not been obtained neither for 
an elongated straight column with an end 
support (Fig. 1), nor for other essentially 
important engineering problems arising due 
to loss of stability in the large. A distinctive 
feature of loss of stability in the large is a 
spontaneous occurrence of the transverse 
mechanical impulse that in the absence of 
imposed transverse force provides the sudden 
crippling of the extremely compressed elastic 
structural members that is followed by final 
deflection and dynamic effect. The elongated 
straight metal column with flat ends without 
connections given in Fig. 1 can serve as a clear 
and powerful example of dynamic effect with 
final deflection at the time of sudden crippling. 
Such columns under compression conditions 
find practical application for erection and 
construction operations.

Fig. 1. The diagram of the support column under load: a – an initial position of the column in the state 
of subcritical compression; b – a supposed bending form after the loss of stability in the small (with no dynamic effect); 

c – loss of stability in the large (with dynamic effect)
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The column with elastic properties set 
between two stiffened plates and loaded 
with axial compressive force T by means of 
a movable upper or bottom plate is under 
consideration. The column may be subjected 
to axial compression between two fixed plates, 
providing uniform heating. In this case it 
necessitates solving the stability problem of 
the column taking into account the thermal 
deformation. The examples illustrate the 
columns ends, which have an extended support 
area with dimension of 2e in the plane of the 
Figure. The thickness of the normal profile of 
the column in the same plane of the Figure 
is characterized by the parameter h = 2c. In 
the plane, perpendicular to the Figure, the 
adequate dimensions of the column profile and 
the support area are characterized by the much 
greater value of b which provides crippling of 
the elastic column in the plane of the Figure. 
Thus the cross section of the column under 
consideration is square and characterized by the 
thickness of h = 2c and width of b, (b >> 2c). 

Problem statement 

The technical and scientific books on 
mechanics of deformable systems do not 
present a theoretical method for determining 
the critical load for the considered case of axial 
loading applied to the elastic support column of 
regular geometry. Due to lack of the theoretical 
justification for loss of stability in the large in 
the ultimately compressed straight bar with flat 
ends, there is no an appropriate design formula 
to determine the critical value of the axial force 
to be used in the engineering practice. 

To solve the problem of stability in the small, 
the Euler formulation allows the occurrence for 
one reason or another of the small deflections 
w(x), which provides the use of a homogeneous 
differential equation of the column bending in 
the plane of the smallest stiffness (in the plane 
of Fig. 1).

 .               (1)

Arbitrarily small deflections can presumably 
be considered at a loss of stability of the column 
according to the diagram given in Fig.  1, b, 
which would correspond to the stiff restraint of 
the ends. With the suitable boundary condition, 
the solution of the quoted differential equation 

determines the value of the critical force 

, that is four times the value of the 

Euler force TE with pivoted connection of the 
ends. If stability is lost according to the diagram 
in Fig. 1, c, than differential equation (1) to 
determine the moment of the column sudden 
crippling is not applicable, since the restoring 
moment of the finite quantity ТЕ holds back the 
small deflections in the bending form. However, 
from the standpoint of classical mechanics [5], 
the column with an end support has to cripple 
according to the diagram in Fig. 1, b, and hence 
cannot lose its stability at the axial force value 

less than , which would contradict 

the experimental data. Under actual conditions, 
the sudden crippling of the considered metal 
column with the end support that have limited 
linear dimensions occurs according to the 
diagram in Fig.  1,  c at the axial force value 

. The results of the static tests 
of axial compression of the elongated frame 
samples with flat ends are shown below.

To obtain the experimental data for the 
loading diagram under consideration, using the 
sheet of rolled steel, material – Steel 20, the  
static test laboratory produced the flat frame 
samples of the regular geometry. The samples 
had square cross section with width of 
b = 50 mm. The level of actual irregularities 
was defined by the technological procedure 
during the manufacture of the steel sheet. The 
visual signs of the samples deviation from 
the original straight form were not found. 
The elongated samples of the first type had 
the pivoted support ends under the axial 
compression. For that reason the ends of the 
samples were beveled that is they had sharp 
edges (e = 0, Fig. 1, a). The first type samples 
had the following parameters: L = 450 mm, 
b = 50 mm; 2c = h = 8.25 mm. The material 
elasticity modulus was Е = 2.1·106 kg/cm2. 
In this case the design value of Euler’s force 
was TE = 2390 kgf. The results obtained under 
the static tests of the two samples showed the 
following values of critical force: 2537 kgf; 
2574 kgf. The axial force was measured by 
the strain gauge force sensor ТВ-25. The axial 
displacements of the loaded bar ends were 
measured by the strain gauge displacement 
sensor ДП-10.
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Slight differences between the experimental 
values of critical force and the design value of 
Euler’s force ~10 % (6 % and 8 %) prove the 
adequacy of the stability calculation method in 
the Euler formulation (loss of stability in the 
small) with the pivoted support of the straight 
bar ends, and in the case of the pivoted support 
of the elongated metal column as well. The 
calculation method with the loss of stability in 
the small in the Euler-Lagrange formulation is 
widely used to calculate the critical load for thin-
walled members, including shell structures. A 
relevant value of the critical load for the shell is 
referred to as «upper» critical load. Under actual 
conditions when the static load is applied to the 
structures of as-built dimensions with cylindrical 
and spherical shells that have actual irregularities, 
loss of stability in the large occurs at much less 
(three–four times) axial compressive loads in 
comparison with the upper critical load. Thus, as 
noted above, the empiric coefficients are used in 
the engineering practice of the stability analysis. 
To implement loss of stability in the large with 
the dynamic effect of buckling in terms of the 
one-dimensional problem, the two samples 
of the second type with the same geometrical 
dimensions as the first type were additionally 
manufactured. Yet the ends of the straight 
samples were flat with the dimensions of 2e = h, 
(b = 50 mm). Therefore the opportunity offered 
the axial compression by the stiffened plates 
according to the diagram shown in Fig. 1, a. 
When the samples with the flat ends lost their 
stability, the deflections were formed according 
to the diagram in Fig. 1, c. According to the 
test data, the following values of the critical 
axial force were obtained for the two samples: 
5447 kgf and 6478 kgf. The excess ratio of the 
critical axial force value in comparison with 
Euler force TE = 2390 kgf at the pivoted support 
in this case is 2.28 and 2.7, respectively. The third 
type of the sample was manufactured of greater 
length (L = 540 mm) and extended support area 
at the end with the parameter 2e  = 12.3 mm, 
(2e  =1.5h, b  =  50 mm). The thickness of the 
cross section: h = 8.3 mm. The axial force was 
loaded continuously by the movable stiffened 
plate up to the sudden buckling at the crippling 
of the bar. 

As a result the sample took the curved 
shape according to Fig.  1, c. Loss of stability 
resulted at the axial force Tcr = 4400 kgf that 
was 2.59 times greater than the design value of 

Euler force (TE = 1700 kgf). Such an essential 
difference of the critical force under the end 
support condition from the Euler force value 
at the pivoted support requires theoretical 
substantiation. At the same time, the axial force 
value Tcr = 4400 kgf is significantly lower than 
the design value of critical force  = 6800 kgf 
at the rigidly restrained ends of the sample bar 
under consideration. 

The technical books that introduce some 
researches in the field of strength and stability 
do not substantiate the mechanism of crippling 
at loss of stability in the large. Analyzing the 
compressive force loaded to the straight bar with 
the flat end, V. Feodosyev, well-known specialist 
in the field of stability of elastic system states: «The 
proposed problem touches upon fundamentally 
new problems on stability and cannot be solved 
by standard methods» ([5], p. 260). To make sure 
of it, the author studies the design diagram of 
transverse-longitudinal bending, where from the 
very beginning of loading the moment TE, where 
e = c, was applied to the bent bar. However, the 
problem with such formulation does not obtain 
the required result, because «it is impossible to 
catch a critical transition from the rectilinear 
form of equilibrium to the curvilinear form 
of equilibrium». In practice of the theoretical 
calculation of shell structures the «method of 
non-ideality» is used, where moment subcritical 
state in the nonlinear formulation is taken into 
account. This method also does not help solving 
the problems of stability in the large, among 
which there is a problem of loss of stability of 
the support column according to the diagram 
in Fig. 1, c. Since in this case the considered 
column has no initial deflection, the sudden 
crippling occurs in the absence of the moment 
subcritical state.

The analysis in terms of the one-dimensional 
problem with allowance for the experimental 
data proves that the stability problem can 
be solved by finding out the physical nature 
of the sudden crippling with transverse 
dynamic impulse in the absence of the external 
transverse force. The article [6] contains the 
investigations on how the initial irregularities 
level affects the intensity of the sudden crippling 
of the ultimately compressed bar at the given 
boundary conditions according to the classical 
diagram: the pivoted support, rigid restraint 
of the ends. It was theoretically established 
that in this case the intensity of the transverse 
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mechanical impulse and the appropriate value 
of the pitch of the macro deflection with loss 
of stability of the compressed elastic bar are 
defined by the elastic deformation energy of 
the bending accumulated within the subcritical 
phase of loading due to the irregularities. 

1. Mechanism of the transverse mechanical 
impulse formation with loss of stability in 
the large 

With the loss of stability of the elastic straight 
bar with the flat ends, loaded with the axial force 
by the stiffened plate according to the diagram 
in Fig. 1, the final deflections that occur at the 
sudden crippling of the bar in accordance with 
the diagram in Fig. 1, c are considered. This 
process of spontaneous formation of deflections 
is characterized by loss of stability in the large 
and is followed by the transverse dynamic 
impulse – «buckling».

It has been noted before that the physical 
nature of the sudden crippling with the 
transverse dynamic impulse in the absence of 
the imposed transverse force is still unknown. 

With the Euler force , the 

considered column and the bar with the flat 
ends under the axial compression are still 
straight, which is proved by the experiments 
conducted on the prototypes. In this case the 
sufficiently small deflections w(x) are prevented 
by the restoring moment of finite quantity 
ТЕ (Fig. 1, c). In the process of spontaneous 
crippling the considered bar shall go through 
the intermediate position, where there is no 
static equilibrium. Therefore, it is impossible 
to determine the coordinates of the space 
position of the bar particles in such conditions. 
Essentially, it means that the coordinate 
location of the particles at the sufficiently small 
deflections within the considered process of 
the spontaneous crippling of the ultimately 
compressed bar remains undefined. As a 
result the Heisenberg uncertainty principle is 
implemented at the macro level. The quantum 
mechanics deals with elementary particles 
at the microlevel in the state of uncertainty. 
According to the uncertainty principle «the 
coordinates and momentum of particle cannot 
simultaneously take on accurate values». Taking 
into account the analysis it can be concluded 
that the ultimately compressed bar with flat ends 

in the process of sudden crippling in the state 
of uncertainty assumes the wave properties at 
the macro level. In this case, according to the 
quantum mechanics, in order to provide the 
spontaneous crippling of the bar with the loss 
of stability in the large, the energy – momentum 
relation is required. 

With certain value of the axial force  
the ultimately compressed bar with flat ends loses 
stability and forms the finite deflections with 
amplitude of the order of the sample thickness 
h. From the energy standpoint, before crippling 
takes place, the bar assumes potential energy 
of the subcritical compression characterized by 

threshold level . In the closing phase 

of the sudden crippling, the bar shifts from its 
uncertainty state to the new position of static 
equilibrium in the bent form (Fig. 1, c). In this 
case, the static equilibrium is provided in the 
condition of the pivoted support of the flat ends 
of the bent bar, as it is shown in Fig. 1, c. After 
crippling, the axial force action is determined 
by the lower value which equals to Euler force 

 that corresponds to the proper value 

of the axial force potential energy  . 

According to the classical solution [7], the 
deflection under such conditions is characterized 
by a half wave sine curve . The 
design diagram of the static equilibrium at the 
pivoted connection is implemented with the 
value of deflection amplitude of . 
In such conditions, the action of the restoring 
moment ТЕ is eliminated. 

The position of the static equilibrium of 
the bar in the bent state is characterized by the 
formative energy of the elastic deformation of 
the bend. To determine the formative energy 
of the bend, the classical formula is used 

. As follows from the 

analysis the energy of bending deformation 
must be created by the transverse mechanical 
impulse, required to overcome the energy 
hump, caused in this case by the restoring 
moment (Tcr)e. It requires the relevant energy 
that in this process is determined by the relation 

. 
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It should be noted that the mechanism of 
transforming the potential energy  into 
the transverse mechanical impulse requires 
the physical substantiation. The articles [8], 
[9] contain the proper physical substantiation 
in terms of the symmetry principle of physical 
phenomena that deals with the idea of the 
intrinsic space of the deformable system. Taking 
elastic bar under the axial force compression as 
an example, the scientific and technical books 
for the first time theoretically established the 
phenomenon of initiation of bending within 
the bar’s eigenspace. Eigenspace bending of 
the ultimately compressed elastic bar as «a 
trigger» is a crucial factor in the spontaneous 
occurrence of the transverse mechanical 
impulse when stability is lost in the large. The 
energy balance in this process corresponds to 
the classical energy conservation law according 
to the equation 

.  (2)

The right part of the equation (2) indicates the 
formative energy of the bend Ef. In integrating 
the right part, the above expression for the bend 

 is used. In the static equilibrium 

of the bent bar with the flat end, the minimum 
value of the formative energy at which the 
amplitude of the specified bend is determined 
by the bar thickness f 

*= h is considered. Taking 
into account the assumed indication, the right 
part of the equation (2) in the result of the 

integration is expressed as . After the 

proper transformations the axial force Tcr in 
the equation (2) is considered as an unknown 
parameter. In this case the critical value of the 
axial force of the ultimately compressed bar 
with the flat end is determined by the formula

.               (3)

Here  – radius of inertia of the cross 

section of the bar with F = bh area. 
The formula (3) was used for the analysis 

of the results of the static stability tests of the 
bar prototypes under the axial compression.  

Since the cross section of the samples was 
square-formed with the radius of inertia of 

 , the formula (3) in this case transforms 

into .
Coefficient k = 3 is used in the specified 

expression to determine the critical value of 
the axial force for the bar, column with round 
cross-section. 

The samples with square cross-section 
were manufactured in various forms of the end 
support:

1. To eliminate the influence of the end 
support and provide the pivoted support under 
the loss of stability of the prototype, the ends 
of the samples were beveled (e = 0). As follows 
from the conducted analysis, the critical value 
of the axial force in accordance with the 
experimental data in this case conforms to the 

design value that equals the value of Euler 

force  with pivoted joint of the ends of 

the centrally-compressed bar with length of 
L0  = 450 mm, L0 = 540 mm. The axial force was 
loaded in vertical and horizontal positions with 
no support of the prototypes on the horizontal 
base. 

2. The ends of the prototypes are made 
flat (2e = h) with length of L0 = 450 mm. The 
results of the static stability tests under the axial 
compression of prototypes with thickness of h 
in quantity of 9 pieces are presented in Table 1. 
The limiting value of axial force according 
to the experimental data is designated by the 
parameter . The critical value of the axial 
force is designated by the parameter  and 
calculated according to the formula (3). The 
degree of conformity of the experimental data 
with the theoretical value of critical force is 
characterized by the coefficient of stability 

 presented in Table 1.

The length change of the compressed 
prototype in accordance with test results 
is designated by the parameter ∆L. The 
theoretical value of the initial length change of 
the ultimately compressed prototype with the 
regular geometry and length of L0 = 45.0 cm 

is calculated from the formula ,  
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where Е = 2.1·106 kg/cm2 is the material 
modulus of elasticity, F = bh is the area of the 
cross section of the prototype with the width  
of b = 5.0 cm.

3. The flat ends of the bars are made with the 
extended support pad (Fig. 1) in two options: 
2e = 1.5h, 2e = 2.7h. The critical value of the 
axial force is designated by the parameter  
and calculated from the formula (3). The results 

of the static stability of the prototypes with the 
width h in quantity of 8 pieces are presented in 
Table 2. The Table uses designations assumed in 
Table 1. The prototypes in quantity of 6 pieces 
(items 1–6) with length of L0 = 450 mm.  
The two prototypes (items 7–8, Table 2) with 
width h = 8 mm with the initial length of 
L0 = 540 mm.  

Table 1

Loading the prototypes with flat ends with compression axial force Taf (2e = h, Fig. 1)

No h, mm
,

tonforce
∆L, mm ∆L0, mm Note

1 7.7 5.1 0.42 0.28 0.99
Vertical loading 

L0 = 45 cm2 7.8 5.68 0.55 0.3 1.1
3 7.8 5.19 0.50 0.3 1.0
4 7.7 4.53 0.96 0.28 0.88

Horizontal loading 
with no support on 

the plane L0 = 45 cm

5 7.8 4.94 0.97 0.27 0.95
6 7.8 4.43 1.02 0.24 0.86
7 8.25 6.48 1.4 0.33 0.98
8 8.25 5.45 1.33 0.28 0.86
9 8.25 6.03 1.4 0.31 0.95

Table 2

Loading the prototypes with the extended support pads of 2e size with the compression  
axial force Taf   (Fig. 1)

No h, mm
, 

tonforce
∆L, mm ∆L0, mm Note

1 3.6 0.485 0.43 0.06 0.92 2e = 10 mm
2 3.6 0.487 0.7 0.06 0.92 2e = 15 mm 
3 7.8 4.57 0.68 0.25 0.88 2e = 12.3 mm
4 7.8 4.9 0.52 0.27 0.95 2e = 12.3 mm
5 7.8 5.0 0.49 0.27 0.97 2e =21.9 mm
6 8.0 5.25 0.65 0.28 0.90 2e = 21.9 mm
7 8.3 4.4 0.9 0.27 0.98 2e =12.3 mm
8 8.3 5.3 0.7 0.33 1.18 2e = 21.9 mm

The analysis results, presented in Tables 1 
and 2, indicate the conformity of the 
experimental values of the axial force at the 
sudden crippling of the ultimately compressed 
elastic prototypes with the theoretical 
value of the critical force, calculated by the 
formula (3). 

The crucial factor at the crippling of the 
prototypes with extended support pad is the 
prototype thickness h used in the design 
formula (3). The upsizing of the support pad 
characterized by the parameter e > h (Fig. 1) 
hardly leads to the increase in the critical 
value of the axial force, which conforms  
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to Saint-Venant’s principle in the edge effect 
analysis in the strength of material method. The 
maximum difference between the experimental 
data and the design values of the axial force 
under the loss of stability of the prototypes is 
12–14 % downward axial force and 10–18 % 
upward axial force. Under the static loading 
of the full-scale compartment load-bearing 
members by the rocketry and other vehicles 
structures, the value of the stability coefficient 
k is within the scatter band ±15 %.

This section presents the solution of the 
loss of stability problem in the large in one-
dimensional formulation based on the example 
of the elastic metal bar with flat ends. The 
energy criterion deals with the inner energy that 
is a certain part of the potential energy of the 
subcritical compression. The same approach 
should be used for analyzing loss of stability 
in the small of the centrally compressed 
straight bar, the pivoted ends of which are in 
fixed position during crippling. This case is 
considered in the engineering analysis practice 
under the thermal deformation of the heated 
metal bar. 

2. Mechanism of deflections formation in 
the problem of stability of the straight bar 
subjected to heating 

The below research deals with the following 
feature: under the loss of stability in the small 
without the dynamic effect, the crippling with 
small macro deflection along the main bend 
shape can be provided not only by the continued 
loading of the external force T, but in some 
isolated cases due to the axial deformation 
caused by the thermal effect when heating the 
bar. The crippling of the elastic bar with the 
length of L under the uniform heating up to 
the specific temperature can be considered as 
an example of «an isolated case». The pivoted 
ends connected to the completely stiffened and 
fixed supports [7] is under consideration. 

The problem of stability of the heated bar 
is solved with the use of the homogenous 
differential equation (1) taking into account the 
internal force of compression N(t) = Т due to 
the thermal deformation in the absence of the 
axial displacement of the ends. According to 
the Euler–Lagrange concept, it is suggested 
that the centrally compressed straight bar 
made of homogeneous material with elastic 

properties obtains arbitrarily small deflection 
w(x) unexpectedly occuring by any reason. 
The problem of stability in the small, using 
in this case the differential equation of static 
equilibrium (1) is solved with such assumption 
in the classical formulation. The classical 
approach also suggests that the crippling is 
accompanied with the continuous loading 
by the external force T that works along the 
axial displacement of the bar end. The work of 
force T along the axial displacement of the end 
provides the bend deformation of material fibers 
and the appropriate deflection of the bar. When  
the deflection of the bar w(x) occurs, the work of 
the external force T transforms into the energy 
of the bend elastic deformation determined 

by the formula . Under 

the loss of stability of the heated bar with the 
pivoted ends fixed, the fundamentally different 
formation mechanism for the energy of the bend 
elastic deformation is realized.

For the first time the articles [6, 8, 10] 
established that the crucial factor of arbitrarily 
small deflections w(x) occurring under the 
loss of stability of the thin-walled structures 
are weak disturbances at the level of the 
ambient noise (the vibrations of atmospheric 
air, acoustical pressure, emanating from 
weak sources of noise, weak vibrations of 
a loader). In conditions of small unforeseen 
environmental effects, the initiation of the 
arbitrarily macro deflections in the ultimately 
compressed deformable system becomes 
possible at zero value of the unit structural 
bending stiffness, that is to say under the «zero 
stiffness effect». While the pivoted support 
of the elastic bar the appropriate stiffness [6] 

with virtual deflections  

with number of half-waves n in the subcritical 
loading phase is defined by the expression 

. Parameter N as the 

axial force is determined by the mechanical 
stress of the axial compression  according 
to the relation .  the actual 

deflection , as the most probable 

one with the amplitude f of one half-wave of the 
sine curve (n = 1), corresponds to the minimum 
value of the parameter N.
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To realize the possible, virtual deflection    
 with the main bend shape into the actual 

arbitrarily small deflection , the potential 
energy of the axial deformation is used under 
the thermal effect during the heating of the 
elastic bar.

In the case under consideration the potential 
energy of the subcritical compression is 
determined by the internal force  
with temperature increase by  degrees with 
the linear expansion coefficient . Value of the 
modulus of elasticity Еt is defined, taking into 
account the maximum attained temperature 
during the bar heating. The elongation of the 
heated bar in the condition of fixed supports 
is ruled out. However, with the temperature 
increase the potential energy of the subcritical 
compression is created in the elastic bar. For 
the straight metal bar with length of L and cross 
section area F, the value of the relevant energy 
P of the subcritical compression is determined 

by the expression . 

It was established above that the occurrence 
of the arbitrarily small deflection  

is possible in the «zero stiffness effect» of the 
ultimately compressed bar. In the process of 
crippling the ultimately compressed bar gets 
length increment, determined by the formula 

 . 

As a result of integration the increment  is 

written down as  characterized by the 

value of the second order of vanishing. The length 
increment of the bar causes the degradation 
of potential energy of compression. In this 
case the corresponding energy degradation 
of compression is determined by the value of 
the second order of vanishing according to 
the expression . The considered axial 
force P (which equals to the internal force N) 
acts in the end sections of the heated bar fixed 
supports. 

At the same time, it is necessary to take into 
account the energy of the elastic deformations 

of the bend  that is caused 

by the deflection . As a result 

of integration the bending energy is written 

down as  that is also determined 

by the value of the second order of vanishing. 
According to the energy conservation law, 
the use of the equality  is based on the 
energy principle. The energy balance in such 
process corresponds to the equation

.               (4)

From the equation (4) follows the expression 
of the axial force P that determines the critical 
force of the axial compression that equals to the 

classical value of Euler force . Since 

the equality P = N is true, where  , 
the maximum value of the temperature 
increment under the loss of stability of the heated 
bar with the pivoted support is determined from 

the assumption . As a result the 

relevant formula is written down as

.                     (5)

The observation and experience indicate 
that the crippling of the uniformly heated bar 
occurs in the absence of the transverse dynamic 
impulse, which is typical for the loss of stability 
in the small.

As follows from the conducted studies on 
the stability of the column with flat ends, the 
formula to determine the limiting value of the 
temperature increment of the heated column 
can be expressed in the similar manner

.             (6)

Conclusions

The mathematic model approximation of 
the load-carrying capacity prediction of the 
ultimately compressed structural members in 
the frames is stated. For the first time in the 
field of mechanics of deformable systems the 
problem of stability in the large, characterized 
by the sudden formation of the deflections in 
finite quantities with mechanical impulse, has 
been solved on the basis of the nonstandard 
approach. The theoretically grounded design 
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formulae have been obtained to determine the 
critical force under the axial compression of 
the column and bar with flat ends under the 
normal temperature and during heating up to 
the limiting temperature. 

Using the prototypes under the normal 
temperature, the critical values of the axial force 
have been found for two options of support pads 
on the flat ends. The experimental data, shown 
in Tables, conform satisfactorily to the design 
values of critical force of the axial compression 
in the elastic region. 
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