logo_ua
Desktop EN 2023
logo_ua
logo_ua

13. Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 87-94

DOI: https://doi.org/10.33136/stma2019.01.088

Language: Russian

Annotation: This article considers the problem of determination of propulsion system solid fuel burn-out time in the extraatmospheric flight segment taking the apparent acceleration and apparent speed measured by the inertial navigation system. Correlation analysis of the realized and nominal dependencies of the apparent acceleration and apparent speed of the launch vehicle on relative operating time of the propulsion system is suggested to be used to forecast the fuel burn-out time. In order to improve the accuracy of the forecast, and to decrease the amplitude and vibration rate of its results several channels simultaneously are suggested to be used for calculations with subsequent majority voting and digital filtration. As a result of the study, the procedure to forecast the time of solid fuel burn-out in the launch vehicle propulsion system in flight has been developed. Operability of the suggested procedure has been verified using the mathematical simulation of the launch vehicle flight for two operating modes of the propulsion system different from the nominal ones. Based on the statistical processing of the deviations of the predicted time of solid fuel burn-out versus the realized one it was determined that the forecast based on the results of apparent acceleration measurement has the greatest accuracy with the minimal number of operations. Suggested procedure is easily realized as the multistage adaptive algorithm and can be used in the guidance system of the solid-propellant launch vehicle in the extra-atmospheric flight segment for the numerical forecast of the reachable terminal parameters of flight, definition of command vector and development of the relevant thrust vector control commands.

Key words: guidance system, correlation analysis, procedure, mathematical simulation

Bibliography:

1. Osnovy teorii avtomaticheskogo upravleniya raketnymi dvigatelnymi ustanovkami / A. I. Babkin, S. I. Belov, N.B. Rutovskiy i dr. – M.: Mashinostroenie, 1986. – 456 s.
2. Proektirovanie system upravleniya obiektov raketno-kosmicheskoy techniki. T. 1. Proektirovanie system upravlenia raket-nositeley: Uchebnik/Yu. S. Alekseev, Yu. Ye. Balabey, T. A. Baryshnikova i dr.; Pod obshey red. Yu. S. Alekseeva, Yu. M. Zlatkina, V. S. Krivtsova, A. S. Kulika, V. I. Chumachenko. – Kh.: NAU «KhAI», NPP «Khartron-Arkos», 2012. – 578 s.
3. Sikharulidze Yu. G. Ballistika letatelnykh apparatov. – M.: Nauka, 1982. – 352 s.
4. Lysenko L. N. Navedenie I navigatsia ballisticheskykh raket: Ucheb. posobie. – M.: Izd-vo MGTU im. N. E. Baumana, 2007. – 672 s.
5. Systemy upravleniya letatelnymi apparatami (ballisticheskimi raketami I ikh golovnymi chastyami): Uchebnik dlya VUZov/ G. N. Razorenov, E. A. Bakhramov, Yu. F. Titov; Pod red. G. N. Razorenova. – M.: Mashinostroenie, 2003. – 584 s.
6. Siouris G. M. Missile guidance and control systems. – New York: Springer-Verlag New York, Inc., 2004. – 666 p. https://doi.org/10.1115/1.1849174
7. Zarchan P. Tactical and Strategic missile guidance. – American Institute of Aeronautics and Astronautics, Inc., 2012. – 989 p. https://doi.org/10.2514/4.868948
8. Balakrishnan S. N. Advances in missile guidance, control, and estimation / S. N. Balakrishnan, A. Tsourdos, B.A. White. – New York: CRC Press, Taylor & Francis Group. 2013. – 682 p.
9. Shneydor N. A. Missile guidance and pursuit: kinematics, dynamics and control. – Horwood Publishing Chichester, 1998. – 259 p. https://doi.org/10.1533/9781782420590
10. Yanushevsky R. Modern missile guidance. – CRC Press, Taylor & Francis Group, 2008. – 226 p. https://doi.org/10.1201/9781420062281

Downloads: 39
Abstract views: 
690
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; North Bergen; Plano; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Great Britain London; London2
Finland Helsinki1
Mongolia1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
Visits:690