logo_ua
Desktop UA 2023
logo_ua
logo_ua

13. Про один підхід до побудови экстремалей у задачах пошуку оптимальних рішень

Автори: Шеховцов В. С.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2018 (2); 117-126

DOI: https://doi.org/10.33136/stma2018.02.117

Мова: Російська

Анотація: Метою статті є розроблення модифікованого варіаційного методу визначення екстремалей у задачах пошуку оптимальних рішень. Метод розроблено з використанням результатів досліджень першої варіації функціонала з автономною підінтегральною функцією для задачі із закріпленими кінцями. Введено припущення про ненульові значення варіацій функції в межових точках. Показано, що на час використання цього припущення та введення деяких інших припущень і обмежень можна розширити клас припустимих функцій, серед яких слід шукати екстремальні криві. За такого розширення для побудови однієї екстремалі необхідно використовувати дві умови екстремальності, однією з яких є рівняння Ейлера. Для їх забезпечення необхідне виконання постійності частинної похідної від підінтегральної функції за шуканою змінною у кожній точці даного відрізка. Нова умова екстремальності на відміну від рівняння Ейлера неінваріантна відносно системи координат. Використання цієї властивості дозволяє за поданням другої варіації функціонала в параметричному вигляді побудувати рішення, що задовольняють необхідні та достатні умови локального мінімуму (максимуму). Зазначено, що запропонований метод є першим кроком у розробленні нового підходу до вирішення багаторозмірних варіаційних задач. Використання останнього дозволить отримувати нові рішення різноманітних задач технічної механіки, таких, наприклад, як задачі визначення оптимальних параметрів траєкторій ракет-носіїв на етапі проектування та розробляння технічних пропозицій, вибору оптимальних режимів польоту й інш. Працездатність запропонованого методу продемонстровано на прикладі розв’язання відомої задачі про брахістохрону – визначення кривої найшвидшого скочування. З використанням методу побудовані дві криві, що задовольняють необхідні та достатні умови оптимальності. Наведено результати порівняння часу скочування матеріальної точки по запропонованих кривих і скочування по класичних екстремалях. Показано, що час скочування по запропонованих кривих менший, ніж під час скочування по класичних екстремалях.

Ключові слова: перша варіація функціонала, спільне використання умов екстремальності, неінваріантність відносно системи координат, параметрична форма другої варіації, оптимальні криві скочування

Список використаної літератури:
Завантажень статті: 30
Переглядів анотації: 
82
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Плейно; Колумбус; Детроїт; Фінікс; Фінікс; Фінікс; Монро; Колумбус; Ашберн; Сіетл; Таппаханок; Де-Мойн; Бордман; Бордман; Ашберн; Бордман; Ашберн18
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур5
Фінляндія Гельсінкі1
Філіппіни Місто Баколод1
Канада Монреаль1
Німеччина Фалькенштайн1
Румунія Волонтарі1
Нідерланди Амстердам1
Україна Дніпро1
13.2.2018 Про один підхід до побудови экстремалей у задачах пошуку оптимальних рішень
13.2.2018 Про один підхід до побудови экстремалей у задачах пошуку оптимальних рішень
13.2.2018 Про один підхід до побудови экстремалей у задачах пошуку оптимальних рішень

Хмара тегів

Visits:82