18. Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor
Organization:
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2019, (1); 122-131
DOI: https://doi.org/10.33136/stma2019.01.122
Language: Russian
Annotation: The basic results of the design calculations and mathematical modelling of the control processes in the precision high-speed servo drive are presented, as well as results of experimental studies of the functional mock-up of this servo drive’s movable gears of the throttle and fuel flow regulator of the ILV main engine. Major task of the studies was theoretical and experimental verification of the required static and dynamic accuracy of the servo drive in the process of try-out of the command signals reception from the main engine’s controller. In the phase of development, theoretical study of the linearized servo drive with application of transformations and theorems of Laplace passages to the limit is conducted. Analytical dependences between servo drive circuit parametres, its elements and characteristics of the control signals are obtained. Instrument errors and servostatic elasticity of the servo drive are calculated. Calculation model including the basic nonlinearities of this servo drive is prepared. Mathematical modelling of the control processes is conducted according to the computational model, varying the circuit and design parameters of the electric drive. Results of the theoretical studies were taken as input data for the requirements specification document to develop the executive unit with the electromotor, reduction gear and output shaft position sensor, and the control box. Functional mockups of the executive unit, control box, as well as the computer-controlled technological test console were manufactured on the basis of the requirements specification documents. The required scope of the laboratory-development tests of the functional mock-up of the servo drive was conducted. Results of the conducted activities confirm the achievement of the required accuracies of the servo drive in the laboratory environment.
Key words: control system, permanent-field synchronous motor, mathematical model, computational analysis
Bibliography:
1. Programma «Mayak», raketa kosmicheskogo naznacheniya, marsheviy dvigatel’ pervoi stupeni: Techn. proekt. Dnepropetrovsk: GP KB «Yuzhnoye», 2015. 490 p.
2. Controller marshevogo dvigatelya pervoi stupeni RKN: Poyasnitelnaya zapiska. Dnepr: GP KB «Yuzhnoye», 2017. 108 p.
3. Marsheviy dvigatel pervoi stupeni RKN: Technicheskoe zadanie na razrabotku electromechanicheskogo privoda mechanizmov drosselya i regulyatora raschoda goryuchego. Dnepr: GP KB «Yuzhnoye», 2016. 68 p.
4. Basharin A. V., Novikov V. A., Sokolovskiy G. G. Upravlenie electroprivodami: Uch. posob. dlya VUZov. L.: Energoizdat, 1982. 392 p.
5. Makarov I. M., Menskiy B. M. Lineinye avtomaticheskie systemy. – 2-e izd., pererab. i dop. M.: Mashinostroenie, 1982. 504 p.
6. Otchet po rezultatam ispytania maketnogo obraztsa electromechanicheskogo privoda mechanizmov drosselya i regulyatora goruchego. Dnepr: GP KB «Yuzhnoye», 2018. 50 p.
Full text (PDF) || Content 2019 (1)
Downloads: 36
Abstract views:
664
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
Country | City | Downloads |
---|---|---|
USA | Boardman; Baltimore; North Bergen; Plano; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn | 20 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 10 |
Unknown | Melbourne; | 2 |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |
Netherlands | Amsterdam | 1 |
Ukraine | Dnipro | 1 |
Keywords cloud
Visits:664