1. Solving a problem of optimum curves of descent using the enhanced Euler equation
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The National Academy of Sciences of Ukraine, Kyiv, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2020, (1); 3-12
DOI: https://doi.org/10.33136/stma2020.01.003
Language: Russian
Key words: first variation of a functional, joint application of extremality conditions, non-invariance in relation to the coordinate system, parametric shape of the second variation, optimum curves of descent
1. Bliss G. A. Lektsii po variatsionnomu ischisleniiu. М., 1960. 462 s.
2. Yang L. Lektsii po variatsionnomu ischisleniiu i teorii optimalnogo uravneniia. М.,1974. 488 s.
3. Elsgolts L. E. Differentsialnye uravneniia i variatsionnoe ischislenie. М., 1965. 420 s.
4. Teoriia optimalnykh aerodinamicheskikh form / pod red. А. Miele. М., 1969. 507 s.
5. Shekhovtsov V. S. O minimalnom aerodinamicheskom soprotivlenii tela vrashcheniia pri nulevom ugle ataki v giperzvukovom neviazkom potoke. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: Sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2016. Vyp. 2. S. 3–8.
6. Sumbatov А. S. Zadacha o brakhistokhrone (klassifikatsiia obobshchenii i nekotorye poslednie resultaty). Trudy MFTI. 2017. T. 9, №3 (35). S. 66–75.
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Matawan; Baltimore; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn | 23 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 6 |
Germany | Frankfurt am Main; Falkenstein | 2 |
Ukraine | Dnipro; Odessa | 2 |
Belgium | Brussels | 1 |
Finland | Helsinki | 1 |
Unknown | 1 | |
Canada | Monreale | 1 |
Romania | Voluntari | 1 |
Netherlands | Amsterdam | 1 |
Keywords cloud