16. Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
Organization:
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2020, (1); 149-154
DOI: https://doi.org/10.33136/stma2020.01.149
Language: Russian
Annotation: Launch vehicle lift-off is one of the most critical phases of the whole mission requiring special technical solutions to ensure trouble-free and reliable launch. A source of increased risk is the intense thermal and pressure impact of rocket propulsion jet on launch complex elements and on rocket itself. The most accurate parameters of this impact can be obtained during bench tests, which are necessary to confirm the operability of the structure, as well as to clarify the parameters and configuration of the equipment and systems of complex. However, full-scale testing is expensive and significantly increases the development time of the complex. Therefore, a numerical simulation of processes is quite helpful in the design of launch complexes. The presented work contains simulation of liquid rocket engine combustion products jet flowing into the gas duct at the rocket lift-off, taking into account the following input data: the parameters of propulsion system, geometric parameters of launch complex elements, propulsion systems nozzles and gas duct. A three-dimensional geometric model of the launch complex, including rocket and gasduct, was constructed. The thermodynamic parameters of gas in the engine nozzle were verified using NASA CEA code and ANSYS Fluent. When simulating a multicomponent jet, the equations of conservation of mass, energy, and motion were solved taking into account chemical kinetics. The three-dimensional problem was solved in ANSYS Fluent in steady-state approach, using Pressure-based solver and RANS k-omega SST turbulence model. The calculation results are the gas-dynamic and thermodynamic parameters of jets, as well as distribution of gas-dynamic parameters at nozzle exit, in flow and in boundary layer at gas duct surface. The methodology applied in this work makes it possible to qualitatively evaluate the gas-dynamic effect of combustion products jets on gas duct for subsequent optimization of its design.
Key words: liquid rocket engine, combustion products, multicomponent flow, ANSYS Fluent
Bibliography:
1. Bonnie J. McBride, Sanford Gordon. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. II. Users Manual and Program Descriptions: NASA Reference Publication 1311. 1996.
2. Ten-See Wang. Thermophysics Characterization of Kerosene Combustion. Journal of Thermophysics and Heat Transfer. 2001. № 2, Vol. 15. P. 140–147. https://doi.org/10.2514/2.6602
3. Maas U., Warnatz J. Ignition Processes in Carbon-Monoxide-Hydrogen-Oxygen Mixtures: Twenty-Second Symposium (International) on Combustion. The Combustion Institute, 1988. P. 1695–1704. https://doi.org/10.1016/S0082-0784(89)80182-1
4. Timoshenko V. I. Teoreticheskiie osnovy tekhnicheskoj gazovoj dinamiki. Kiev, 2013. S. 154–155.
Full text (PDF) || Content 2020 (1)
Downloads: 46
Abstract views:
1805
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Matawan; Baltimore; Boydton; Plano; Dublin; Dublin; Columbus; Ashburn; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman | 25 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 6 |
Ukraine | Dnipro; Kyiv; Dnipro | 3 |
Canada | Toronto; Toronto; Monreale | 3 |
Unknown | ; | 2 |
Germany | ; Falkenstein | 2 |
Belgium | Brussels | 1 |
Finland | Helsinki | 1 |
France | Paris | 1 |
Romania | Voluntari | 1 |
Netherlands | Amsterdam | 1 |
Keywords cloud
Visits:1805