3. Experimental research on separation diaphragm performance in propellant storage and feed systems of liquid propellant tanks
Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2025 (1); 19-27
DOI: https://doi.org/10.33136/stma2025.01.019
Language: Ukrainian
Key words: Strength parameters; aircraft, space and rocket technologies; design parameters; mathematical simulation; fuel tank; separation diafragm; autonomous bench testing; critical pressure
1. Ballinger I. A., Lay W. D., Tam W. H. Review and History of PSI Elastomeric Diaphragm Tanks. 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 10-12
July 1995, San Diego, CA, USA. DOI: https://doi.org/10.2514/6.1995-2534.
2. Hartwig J. W. A detailed historical review of propellant management devices for low gravity propellant acquisition. 52nd AIAA/SAE/ASEE Joint Propulsion Conference,
25-27 July 2016, Salt Lake City, USA. Reston: American Institute of Aeronautics and Astronautics. DOI: https://doi.org/10.2514/6.2016-4772.
3. Lenahen B., Gangadharan S., Desai M. A Computational and Experimental Analysis of Spacecraft Propellant Tanks Implemented with Flexible Diaphragms. Proceedings of
the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston, Massachusetts, USA: American Institute of Aeronautics and
Astronautics. DOI: https://doi.org/10.2514/6.2013-1886.
4. Sabaghzadeh H., Shafaee M. Reversal modeling and optimal design of hyper-elastic diaphragm in space fuel tanks. SN Applied Sciences. 2021. Vol. 3, Article number:
792. DOI: https://doi.org/10.1007/s42452-021-04785-0
5. Conomos H. A., Alongi C. G., Moore J., Yager J., Goddard R., Salzler T., Fetes J., Burch K. Development of 10 inch Diameter Titanium Rolling Metal Diaphragm Tank
for Green Propellant. AIAA Propellant Storage and Management II. DOI: https://doi.org/10.2514/6.2017-4915.
6. Jøraholmen T., Korsvold S., Sandvold P., Luktvasslimo Ø., Snilsberg K. E.
Roadmap towards a qualified aluminium green propellant diaphragm tank. Aerospace Europe Conference 2023 – 10ᵀᴴ EUCASS – 9ᵀᴴ CEAS, 9-13 July 2023, Lausanne, Switzerland.
Lausanne: EUCASS. DOI: https://doi.org/10.13009/EUCASS2023-093.
7. Shen Y. A computational analysis of reversal behaviors of a spacecraft propellant management device. International Conference Optoelectronic Information and Optical
Engineering (OIOE 2024), 2024, Wuhan, China. Bellingham: SPIE, 2025. (Proceedings of SPIE; Vol. 13513). DOI: https://doi.org/10.1117/12.3045569.
8. Windisch M., Beck R. Numerical Simulation and Optimisation of a Hemisсherical Metallic Membrane Designed for Positive Expulsion of a Propellant Tank (for
Replacement of Conventional PMD). Spacecraft Structures, Materials and Mechanical Testing: Proceedings of a European Conference, 4-6 November 1998, Braunschweig,
Germany. Paris: European Space Agency (ESA), 1999. Vol. 428. P. 45. ISBN 9290927127.
9. Mudrov D.S., Zil V.V. Doslidzhennia napruzheno-deformovanoho stanu vytysknykh diafrahm. Heotekhnichna mekhanika: zb. nauk. prats. / In-t heotekh. mekh. im. M.S.
Poliakova NAN Ukrainy. Dnipro, 2016. Vyp. 131. S. 173-182.
10. Mozharovskii M.S. Teoriia pruzhnosti, plastychnosti i povzuchosti: pidruchnyk / M.S. Mozharovskyi. K. : Vyshcha shkola, 2002. 308 s.
11. Libai A., Simmonds J.G. The Nonlinear Theory of Elastic Shells. 2nd ed. Cambridge: Cambridge University Press, 1998. 564 p. ISBN 978-0-521-01976-7.
Full text (PDF) || Content 2025 (1)
| Country | City | Downloads |
|---|---|---|
| USA | Cleveland; Chicago; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Ashburn; Ashburn; Mountain View; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Pompano Beach; Lakeside; Lakeside | 18 |
| Ukraine | Kyiv; Kyiv; Kyiv; Kyiv; Kyiv; Kremenchuk | 6 |
| Singapore | Singapore; Singapore; Singapore | 3 |
| Brazil | Brasopolis; Monte Mor; Rio Claro | 3 |
| Germany | Falkenstein; Falkenstein | 2 |
| Greece | Thessaloniki | 1 |
| India | Nashik | 1 |
| China | Pekin | 1 |
| Unknown | 1 | |
| Netherlands | Zwolle | 1 |
| Bangladesh | 1 |



