logo_ua
Desktop EN 2023
logo_ua
logo_ua

3. Electric thrusters utilizing metal plasma

Автори: Spirin Ye. V., Nadtoka V. M.

Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2025 (2); 24-34

Language: Ukrainian

Annotation: The article provides an overview of modern research on the problem of creating electric jet engines based on metal plasma. Electric jet engines have long attracted the attention of specialists working in the fi eld of creating space technology. One type of electric rocket engines is electric engines that use a metal plasma fl ow. A metal plasma rocket engine (Vacuum Arc Thruster, VAT) is a new class of electric propulsion systems in which metal converted into a plasma state using an electric discharge and an accelerated metal plasma fl ow creates jet thrust. A metal plasma engine does not require gas or liquid fuel, neutralizers, heaters, highvoltage electronics, or strong electric or magnetic fi elds to operate. Metal plasma engines use metal to create a plasma fl ow, so their design is very compact. Since the cathode material is in the solid phase, there can be no fuel loss due to leakage. No gases are required, so such engines do not threaten the spacecraft with a possible explosion of the pressurized container. In addition, there are no valves and fl ow sensors (components that increase the complexity and cost of the system). The purpose of this work is to analyze the level of development of vacuum-arc jet engines on metal plasma based on the generalization and systematization of publications. Particular attention paid to the analysis of works that consider metal plasma engines with a thrust level of the order of millinewtons. Based on the analysis, conclusions drawn regarding the relevance of the development of vacuum-arc jet engines. In March 2024, a satellite successfully launched in the USA, in which the Xantus X4 vacuum-arc jet engine developed by Alameda Applied Sciences Co. and Benchmark Space Systems was installed. Currently, leading companies in the space industry continue to improve the technology of metal plasma rocket engines with an emphasis on reliability, increased thrust and service life. The article intended for specialists in the fi eld of rocket engine engineering.

Key words: electric thruster, vacuumarc discharge, metal plasma

Bibliography:

1. Ethan Dale, Benjamin Jorns and Alec Gallimore. Future Directions for Electric Propulsion Research. Aerospace. 2020, 7, 120. https://doi.org/:10.3390/aerospace7090120
2. Lev D., Myers R. M., Lemmer K. M., Kolbeck J., Koizumi H., Polzin K. The technological and commercial expansion of electric propulsion. Acta Astronautica. 2019. Vol. 159. P. 213–227.
3. O’Reilly D., Herdrich G., Kavanagh D. F. Electric Propulsion Methods for Small Satellites: A Review. Aerospace 2021. Vol. 8. Issue 1. 22. https://doi.org/10.3390/aerospace8010022
4. Kolbeck J., Anders A., Beilis I. I., Keidar M. Micro-propulsion based on vacuum arcs. Journal of Appied Physics. 2019. Vol. 125. Issue 22. https://doi.org/10.1063/1.5081096.
5. Polk J. E., Sekerak M. J., Ziemer J. K., Schein J., Anders A. A Theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance. IEEE Trans. Plasma Sci. 2008. Vol. 36. No. 5, P. 2167–2179. https://doi.org/10.1109/TPS.2008.2004374
6. Schein J., Qi N. , Binder R., Krishnan M., Anders A. et al. Low mass vacuum arc thruster system for station keeping missions. IEPC-01-228: Pasadena, CA. USA. 2001.
7. Anders A. Cathodic Arcs. Springer Science Business Media. New York. 2008. 540 p.
8. Sanders D. M., Anders A. Review of Cathodic Arc Deposition Technology at the Start of the New Millennium. Surface and Coatings Technology. Vol. 133–134. 2000. P. 78–90. at the University of the Witwatersrand, Johannesburg, in fulfi lment of the requirements for the degree of Doctor of Philosophy. 2015.
13. Dethlefsen R. Performance measurements on a pulsed vacuum arc thruster. AIAA Journal. 1968. 6(6). P. 1197–1199.
14. Gilmour A. & Lockwood D. Pulsed metallic-plasma generators. Proceedings of the IEEE. 1972. 60(8). P. 977–991.
15. Qi N., Gensler S., Prasad R., Krishnan M., Vizir A. & Brown I. A vacuum arc ion thruster for space propulsion. Technical report, AASC. SBIR Phase-I Final Report F49620-97-C-0024, 31 MARCH 1998.
16. Tang B., Idzkowski L. & Au M. Thrust improvement of the magnetically enhanced vacuum arc thruster (MVAT), in ’29th International Electric Propulsion Conference’, Vol. IEPC-2005-304. 2005. Princeton University.
17. Polk J. E., Sekerak M. J., Ziemer J. K., Schein J., Niansheng Qi, Binder R., Anders A. A Theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance. IEEE Trans. Plasma Sci. 2008. Vol. 36. No. 5, P. 2167–2179.
18. Rysanek F., Hartmann J. W., Schein J. and Binder R. MicroVacuum Arc Thruster Design for a CubeSat Class Satellite. In 16th Annual/USU Conference on Small Satellites. 2002.
19. Lun J. Development of a vacuum arc thruster for nanosatellite propulsion. Master’s thesis, Stellenbosch University. 2008.
20. Keidar M., Schein J., Wilson K., Gerhan A., Au M., Tang B., Idzkowski L., Krishnan M. and Beilis I. I. Magnetically enhanced vacuum arc thruster. Plasma Sources Sci. Technol. 2005. 14(4), 661–669.
21. Schein J., Gerhan A., Woo R., Au M., Krishnan M. Vacuum arc plasma thrusters with inductive energy storage driver. US Patent App. 11/417,366. 2007.
22. Gilmour A. S. Concerning the Feasibility of a Vacuum arc Thruster. In AIAA 5th Electric Propulsion Conference, San Diego, CA. 1966.
23. Schein J., Qi N., Binder R., Krishnan M., Polk J., Ziemer J. and Shotwell R. Vacuum Arc Thruster for Small Satellite Applications. Final Contractor Report, NASA. NASA CR-2001-211323. 2001.
24. Pietzka M. Development and Characterization of a Propulsion System for CubeSats Based on Vacuum Arc Thrusters. Ph.D. Thesis, University of the Bundeswehr Munich, Munich, Germany, 2016. P. 177.
25. Zhuang T., Shashurin A., Brieda L., and Keidar M. Development of micro-vacuum arc thruster with extended lifetime. 31st International Electric Propulsion Conference, IEPC-2009-192. Ann Arbor, Michigan. 2009.
26. Duppada G. S., Taploo A., Spinelli J., Keidar M. Toward achieving longevity of micro cathode thrusters. Journal of Applied Physics. 2025. 138(2). https://doi.org/10.1063/5.0273158
27. Krishnan M., Velas K., and Leemans S. Metal Plasma Thruster for Small Satellites. AIAA Journal. 2020. Vol. 36. No. 4. P. 535–539. https://doi.org/10.2514/1.B37603
28. Frankovich K., Krishnan M., Metal plasma thruster (MPT): from garage to orbit in 4 years, presented at the 2024 3AF Space Propulsion Conference in Glasgow, Scotland, 20–23 MAY 2024.
29. Frankovich K., Krishnan M., Mackey J.A., Kamhawi H. Flight Metal Plasma Thruster (MPT) Development, Qualifi cation, and Thrust Measurement Campaign. Nasa Technical Reports Server: Cleveland, OH, USA, 2024.
30. Saletes J., Kim M., Saddul K., Wittig A., Honda K., Katila P. Development of a Novel Cubesat De-Orbiting All Printed Propulsion System. Space Propulsion: Estoril, Portugal, 2022.
31. Kanda B. and Kim M. Operation of Vacuum Arc Thruster Arrays with Multiple Isolated Current Sources. Aerospace. 2025, 12(6), 549. https://doi.org/10.3390/aerospace12060549
32. Anders A., Schein J. and Qi N. Pulsed vacuum-arc ion source operated with a ‘triggerless’ arc initiation method. Review of Scientifi c Instruments. 2000. 71(2). P. 827–829.
33. Schein J., Qi N., Binder R., Krishnan M., Ziemer J. K., Polk J. E., & Anders A. Inductive Energy Storage Driven Vacuum Arc Thruster, Review of Scientifi c Instruments. 2022. 73. P. 925–927. https://doi.org/10.1063/1.1428784

Downloads: 1
Abstract views: 
6
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
Ukraine Dnipro1
3.2.2025 Electric thrusters utilizing metal plasma
3.2.2025 Electric thrusters utilizing metal plasma
3.2.2025 Electric thrusters utilizing metal plasma

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
Visits:6