logo_ua
Desktop EN 2023
logo_ua
logo_ua

4. Experimental development of a pyrolysis technology for unwinding carbon composites for filler reuse

Автори: Romenska O. P., Derevianko I. I., Halahan P. O.

Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2025 (1); 28-33

DOI: https://doi.org/10.33136/stma2025.01.028

Language: Ukrainian

Annotation: Carbon composites are widely used in various components of modern technology, leading to an increasing accumulation of composite waste. An urgent challenge is the development of methods for recycling carbon composites and enabling the reuse of their constituent fi llers. In order to reuse the fi ller, it must be separated from the matrix while maintaining its continuous structure to preserve its original properties as much as possible. The primary task during separation is melting the polymer matrix–either a thermoplastic or thermosetting resin. Various methods are available to address this challenge, including mechanical recycling, solvent-based recovery, and thermal recovery methods. This study describes the process of separating a carbon tow via pyrolysis, using as an example a tubular structure manufactured through wet winding of T800-type carbon fi ber impregnated with epoxy resin. During the experimental evaluation, the pyrolysis of the wound composite was conducted at temperatures ranging from 350°C to 850°C. A continuous carbon tow was successfully extracted after 20 minutes of thermal exposure. To assess the properties of the recovered tow and compare them with those of the as-delivered tow, strength tests, weight loss measurements, and microstructural analysis were carried out. The results showed a fourfold reduction in the tensile strength and a twofold decrease in mass after pyrolysis. Microstructural examination revealed the presence of micropores in the recovered tow, correlating with the observed degradation in strength and mass loss. The study confi rms the feasibility of unwinding carbon composites via high temperature thermal decomposition (pyrolysis) and successfully recovering a continuous carbon tow.

Key words: Carbon composite, reuse, pyrolysis, tow strength, microstructure

Bibliography:

1. Vlastyvosti vuhletsevoho volokna. Data onovlennia: 06.12.2024. URL: https://jinsuncarbon.com (data zvernennia: 21.04.2025).

2. Ramesh M., Rajeshkumar L., Srinivasan N., Kumar D. and Balaji D. Influence of filler material on properties of fiber-reinforced polymer composites: A review. e-
Polymers. 2022. Vol. 22, № 1. P. 898-916.
https://doi.org/10.1515/epoly-2022-0080

3. Bondarenko O. & Tkachov Y. (2024). Improving the mass perfection of composite cylindrical shells of rocket fuel tanks. System Design and Analysis of Aerospace
Technique Characteristics. 2024. Vol. 34, № 1. P. 38-48. https://doi.org/10.15421/472404.

4. Potochna sytuatsiia pererobky ta utylizatsii kompozytiv z vuhletsevoho volokna. Data onovlennia: 25.11.2022. URL: http://m.ua.lft-lgf.com/info/material-recycle-
81943533.html (data zvernennia:01.03.2025), https://doi.org/10.9790/0661-2101010103.

5. Pascoe R. D. Sorting of waste plastics for recycling. Rapra review reports. 2000, Vol. 11, № 4, 108 p.

6. Bibinger J., Eibl S. & Gudlant Hj. Influence of Low and Extreme Heat Fluxes on Thermal Degradation of Carbon Fibre-reinforced Polymer. Applied Composite Materials.
2022. Vol. 29, P. 1817-1840. https://doi.org/10.1007/s10443-022-10043-2.

7. Drozdov O. V., Volkov Yu. M., Husarova I. O., Potapov O. M., Samusenko O. A. Vplyv temperatury na mekhanichni vlastyvosti odnospriamovanoho vuhleplastyka u
pozdovzhniomu ta transversalnomu napriamkakh. Strenght of Materials. 2021. № 5. P. 41-48. DOI:
https://doi.org/10.1007/s11223-021-00337-4

8. Teijin Carbon. Data onovlennia: 04.03.2025. URL: https://www.teijincarbon.com/fileadmin/PDF/Datenbl%C3%A4tter_en/Product_Data_Sheet_TSG01en__EU_Filament_.pdf (data zvernennia: 21.04.2025).

9. Antala specialty chemicals. Data onovlennia:14.02.2025. URL: https://www.antala.uk/wp-content/uploads/2018/12/Composite-resin-systems_2-page-view_03042018-1.pdf
(data zvernennia: 04.03.2025).

10. Voroniak V. V., Kozenko O. V., Dvyliuk I.V. Metody doslidzhennia yakosti vody ta okhorona dzherel vodopostachannia: navchalno-metodychnyi posib. Lviv. LNUVMB imeni
S. Kh. Hzhytskoho, 2020. 176 s.

Downloads: 33
Abstract views: 
458
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Ashburn; San Mateo; San Mateo; San Mateo; Ashburn; Ashburn; Pompano Beach; Lakeside; Lakeside14
Ukraine Kyiv; Kyiv; Dnipro; Kyiv; Dnipro; Kyiv; Kremenchuk; Odessa8
Singapore Singapore; Singapore; Singapore3
Vietnam Bien Hoa1
China Pekin1
Germany Falkenstein1
Brazil Rio de Janeiro1
Mexico1
France Paris1
Unknown Hong Kong1
Paraguay Ciudad del Este1
4.1.2025 Experimental development of a pyrolysis technology for unwinding carbon composites for filler reuse
4.1.2025 Experimental development of a pyrolysis technology for unwinding carbon composites for filler reuse
4.1.2025 Experimental development of a pyrolysis technology for unwinding carbon composites for filler reuse

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
Visits:458