1. Optimization of the trajectory of the antiaircraft guided missile

1. Optimization of the trajectory of the antiaircraft guided missile

Izhko V. A., Yemelyanova I. A., Reznik I. M., Khorolskiy P. G.

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine.

Kosm. teh. Raket. vooruž. 2019, (2); 3-10
https://doi.org/10.33136/stma2019.02.003
 
Language: Russian
Annotation:
The article is devoted to optimization of a trajectory of the antiaircraft guided missile performed in design phase. The review of existing solutions on this issue confirmed the topicality of the problem. The analytical solution cannot be obtained, therefore, according to modern tendencies, optimization by numerical method of original development was performed. The basis of the method is two-level optimization which is carried out, in turn, by two different numerical methods and for two different criteria functions. At the top level, by method of random search and as a variant, by method of coordinate descent, the search was carried out for a fixed set of intermediate for the specified flight range trajectory points which co-ordinates in aggregate provide the necessary optimum. At the bottom level, for each pair of consecutive intermediate points, the boundary problem of falling into distant point by one-dimensional optimization was solved. The coordinate descent method was used for search for the simplified flight program. As optimization criteria for top level, minimum flight time or maximum final speed, for bottom  terminal criterion were used. The control program selected the angle of attack program. As a result, the optimum and suboptimum (additionally ensuring minimum calculation time) trajectories and flight programs to maximum range and different altitudes were obtained. The analysis of results showed practical proximity of trajectories of minimum flight time and maximum final speed.
Key words: anti-aircraft missile, optimization, angle of attack program, trajectory.

Bibliography:

1. Letov A. M. Dynamika poleta i upravlenie. M., 1969. 360 s.
2. Ushan’ V. N. Metod synteza optymalnykh traektoriy dlya vyvoda dynamicheskykh obiektov v zadannuyu tochku. Systemy obrobky informatsii. 2014. № 1 (117). S. 67-71.
3. Zarubinskaya A. L. Optimalnoe upravlenie dvizheniem letatelnykh apparatov v atmosfere ot starta do tochek vstrechi. Technicheskaya mekhanika. 1997. № 5. S. 23-28.
4. Grabchak V. I. Osnovni aspekty opysu zadachi pro optimalnu shvidkodiu keruvanny rukhom rakety. Systemy ozbroyennya i viyskova tekhnika. 2014. № 4(40). S. 13-20.
5. Shaw Y. Ong. Optimal Planar Evasive Aircraft Maneuvers Against Proportional Navigation Missiles. Journal of guidance, control and dynamics. 1996. Vol. 19, № 6. Р. 1210-1215. https://doi.org/10.2514/3.21773
6. Renjith R. Kumar. Near-Optimal Three-Dimensional Air-to-Air Missile Guidance Against Maneuvering Target. Journal of guidance, control and dynamics. 1995. Vol. 18, № 3. Р. 457-464. https://doi.org/10.2514/3.21409
7. Paul J. Enright. Conway Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming. Journal of guidance, control, and dynamics. 1992. Vol. 15, № 4. Р. 994-1002. https://doi.org/10.2514/3.20934
8. Craig A. Phillips. Trajectory Optimization for a Missile Using a Multitier Approach. Journal of Spacecraft and Rockets. 2000. Vol. 37, № 5. Р. 653-662. https://doi.org/10.2514/2.3614
9. Lebedev A. A., Gerasyuta N. F. Ballistila raket. M., 1970. 244 s.
10. Proektirovanie zenitnykh upravlyaemykh raket / I. I. Arkhangelskiy i dr.; pod red. I. S. Golubeva i V. G. Svetlova. M., 2001. 732 s.
11. Drakin I. I. Osnovy proektirovania letatelnykh apparatov s uchetom ekonomicheskoy effektivnosti. M., 1973. 224 s.
12. Beiko I. V., Bublik B. N., Zinko P. N. Metody i algoritmy resheniya zadach optimizatsii. K., 1983. 512 s.
13. Krinetskiy Ye. I. Systemy samonavedeniya. M., 1970. 236 s.

Full Text (PDF) || Content 2019 (2)