4. Numerical simulation of behavior of elastic structures with local stiffening elements

4. Numerical simulation of behavior of elastic structures with local stiffening elements

Hudramovich V. S., Hart E. L., Strunin K. A.

The Institute of Technical Mechanics, Dnipro, Ukraine. Yangel Yuzhnoye State Design Office, Dnipro, Ukraine. Oles Honchar Dnipro National University, Dnipro, Ukraine.

Kosm. teh. Raket. vooruž. 2019, (2); 25-34
https://doi.org/10.33136/stma2019.02.025
 
Language: Russian
Annotation:
Availability of different inclusions, stiffenings, discontinuities (holes, voids and flaws) are the factors that cause structural irregularity and are typical for structural elements and buildings from various current technology areas, in particular aerospace technology. They significantly influence the deformation processes and result in stress concentration, which can cause local damages or malconformations and as a result lead to impossibility to further use the structure. Materials used are also heterogeneous in its structure. Inclusions can simulate thin stiffening elements, straps, welded or glue joints. It is necessary to detect the thin inclusions when phase transformations of materials are studied, for example, when martensite structures are formed. Study of the various bodies with inclusions is very important in the powder technology, ceramics, etc., where powder, previously compressed under high pressure, is sintered at high temperatures. Use of surface hardening that increases working efficiency of the structural elements is prospective in many engineering sectors. It is important to develop discrete hardening, implemented through manufacturing schemes of particular type. When discrete hardenings impact on the structural elements mode of deformation is simulated, they can also be considered as inclusions of specific structure. Inclusions can also simulate banding of the ferritic-pearlitic structure in the microstructure, related to the complex preloading under material plastic forming. It is advisable to use numerical methods for studies that are universal and suitable for objects of various shapes, sizes and types of loading. Main numerical methods are finite difference method, boundary element method, variation grid-based method, finite element method, method of local variations. This article features ANSYS - based computer simulation of the aerospace structural element behavior - a rectangular plate with two extended elastic inclusions of different rigidity, simulating elastic heterogeneities of structures and materials.
Key words: finite-element method, strength, inclusions, computer simulation.

Bibliography:

1. Brebbia K., Telles J., Wroubell L. Metody granichnykh elementov / per. s angl. M., 1987. 524 s.
2. Vasidzu K. Variatsionnye metody v teorii uprugosti i plastichnosti / per. s angl. M., 1987. 544 s.
3. Vilchevskaya Ye. N., Korolev I. K., Freidin A. B. O fazovykh prevrasheniyakh v oblasti neodnorodnosti materiala. Ch. 2: Vzaimideistvie treschiny s vklyucheniem, preterpevayushim fazovoe prevraschenie. Izv. RAN. Mekhanika tverdogo tela. 2011. № 5. S. 32–42.
4. Hart E. L. Konechnoelementniy analiz ploskodeformiruemukh sred s vklyucheniyami. Visn. Dnipropetr. un-tu. Ser.: Mekhanika. 2011. Vyp. 15, t. 2. S. 39–47.
5. Hart E. L., Hudramovich V. S. Chislennoye modelirovanie povedeniya ploskodeformiruemykh strukturirivannykh sred na osnove proektsionno-iteratsionnykh ckhem MKE. Matemat. modelirovanie v mekh. deform. tel i konstruktsiy: materialy 24-oy Mezhdunarod. conf. (SPb., Rossiya, 2011). SPb., 2011. T. 11. S. 37–39.
6. Hart E. L., Hudramovich V. S. Chislennoe modelirovanie structurirovannykh sred. Dopovidi NAN Ukrainy. 2012. № 5. S. 49–56.
7. Hart E. L., Hudramovich V. S. Proektsionno-iteratsionnaya modifikatsia metoda lokalnykh variatsiy dlya zadach s kvadratychnym funktsionalom. Prikl. Matematika I mekhanika. 2016. T. 80, № 2. S. 218–230. https://doi.org/10.1016/j.jappmathmech.2016.06.005
8. Hudramovich V. S. Osobennosti neuprugogo povedeniya neodnorodnykh obolochechnykh elementov konstruktsiy. Aktualnye problem mekhaniki: monografia/ za red. M. V. Polyakova. Dnipro, 2018. S. 195–207.
9. Hudramovich V. S., Hart E. L. Konechnoelementniy analiz processa rasseyanogo razrusheniya ploskodeformiruemykh uprugoplastichnykh sred s lokalnymi contsetratami napryazheniy. Uprugost’ I neuprugost’: Materialy Mezhdunarod. nauchn. symp. po problemam mekhaniki deformiruemykh tel, posvyaschennogo 105-letiyu so dnya rozhdeniya A. A. Ilyushina (Moskow, 2016 ). M., 2016. S. 158–161.
10. Hudramovich V. S., Hart E. L., Strunin K. A. Modelirovanie processa deformirovaniya plastiny s uprugimi protyazhonnymi vklyucheniyami na osnove metoda konechnykh elementov. Tekhn. mechanika. 2014. № 2. S. 12–24.
11. Hudramovich V. S., Demenkov A. F., Konyukhov S. N. Nesuschaya sposobnost’ neidealnykh tsilindricheskykh obolochek s uchetom plasticheskykh deformatsiy. Prochnost’ I nadezhnost’ elementov konstruktsiy: sb. nauchn. tr. K., 1982. S. 45–48.
12. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliyanie vyrezov na prochnost’ tsilindrycheskykh otsekov raket-nositeley pri neuprugom deformirovanii materiala. Kosmichna nauka I technologia. 2017. T. 23, № 6. S. 12–20.
13. Hudramovich V. S., Levin V. M., Hart E. L. i dr. Modelirovanie processa deformirovaniya plastinchatykh elementov zherezobetonnykh konstruktsiy teploenergetiki s ispolzovaniem MKE. Techn. mechanika. 2015. № 2. S. 59–70.
14. Hudramovich V. S., Reprintsev A. V., Ryabokon’ S. A., Samarskaya E. V. Otsenka resursa konstruktsiy raketno-kosmicheskoy techniki pri uchete vliyaniya kontsetratov napryazheniy v vide otverstiy. Technicheskaya diagnostika i nerazrushaushiy control. 2016. № 2. S. 28–36.
15. Gultyaev V. I., Zubchaninov V. G., Zubchaninov D. V. Strukturnye izmeneniya stali 45 v processe eyo deformirovaniya. Izv. Tulskogo gos. un-ta. 2005. Vyp. 8. S. 26-29.
16. Zenkevich O., Morgan K. Konechnye elementy i aproximatsia / per. s angl. M., 1986. 318 s.
17. Kashanov A. E. Perspektivy sotrudnichestva NAN Ukrainy, NAN Belarusi i Yuzhnoye SDO dlya resheniya problemnykh voprosov kosmicheskoy otrasli. Raketnaya technika. Novye vozmozhnosti: nauchn.-techn. sborn. / pod red. A. V. Degtyareva. Dnepr, 2019. S. 281–294.
18. Koval’ Y. N., Lobodyuk V. A. Deformatsionnye i relaksatsionnye yavlenia pri prevraschenniyakh martensitnogo typa. K., 2010. 288 s.
19. Lyashenko B. A., Kuzema Y. A., Digahm M. S. Uprochnenie poverkhnosti metallov pokrytiyami diskretnoy struktury s povyshennoy adhezionnoy i cohezionnoy stoykostyu. К., 1984. 57 s.
20. Stern M. B., Rud’ V. D. Mekhanichni ta kompyuterni modeli konsolidatsii granulyuovanykh seredovysh na osnovi poroshkiv metaliv i keramiki pri deformuvanni ta spikanni / za red. V. V. Skorokhoda. Lutsk, RVV LNTU, 2010. 232 s.
21. ANSYS release 18.1 Documentation for ANSYS WORKBENCH: ANSYS Inc.
22. Hart E., Hudramovich V. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance–2012: Proc. of Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). P. 157–164.
23. Hart E., Hudramovich V. Projection-iterative schemes for the realization of the finite-element method in problems of deformation of plates with holes and inclusions. J. Math. Sci. 2014. Vol. 203. № 1. P. 55–69. https://doi.org/10.1007/s10958-014-2090-x
24. Hudramovich V. S. Features of nonlinear deformation and critical states shell structures with geometrical imperfections. Int. Appl. Mech. 2006.Vol. 42, № 12. P. 1323–1355. https://doi.org/10.1007/s10778-006-0204-y
25. Hudramovich V. S., Hart E. L., Ryabokon’ S. A. Elastoplastic deformation of nonhomogeneous plates. J. Eng. Math. 2013. Vol. 78, № 1. P. 181–197. https://doi.org/10.1007/s10665-010-9409-5
26. Hudramovich V. S., Hart E. L., Strunin K. A. Modeling of the behavior plane-deformable elastic media with elongated elliptic and rectangular inclusions. Materials Science. 2017. Vol. 52, № 6. P. 768–774. https://doi.org/10.1007/s11003-017-0020-z
27. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: Procedings Int. Conf. (Helsinki, Finland, 1999). Amsterdam/ New York / Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
28. Olevsky E. A., Maximenko A. and Van Der Biest O. On-line sintering strength of ceramic composites. Int. J. Mech. Sci. 2002. Vol. 44. P. 755–771. https://doi.org/10.1016/S0020-7403(02)00005-X

Full Text (PDF) || Content 2019 (2)