9. The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps

9. The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps

Nazarenko G. V., Filippenko P. P., Strelchenko A. Y., Deshevykh S. A.

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Kosm. teh. Raket. vooruž. 2018, (2); 76-82
https://doi.org/10.33136/stma2018.02.076
 
Language: Russian
Annotation:
In the present-day rocket engineering, the liquid rocket engines with pump feed system have gained wide acceptance. As a rule, the pumps used in liquid rocket engines are screw-axifugal. The screw serves to increase pressure upstream of the axifugal wheel, thus ensuring its cavitation-free operation. The screws used in the screw-axifugal pumps of liquid rocket engines may be of two types: with constant and variable step. The screws with constant step are easier to calculate, profile and manufacture as compared to the screws with variable step. As known from the literature, the use of the screw with variable step increases power characteristics of the screw-axifugal pump. The purpose of investigation is comparative analysis of cavitation and power characteristics of the following high-speed low-consumption screw-axifugal pumps of liquid rocket engines with jointed screws, screws of constant and variable step:  RD868 engine oxidizer and fuel pumps;  RD859 engine fuel pumps;  RD861K engine fuel pumps. Besides, the analysis has been made of the impact of design features and geometrical dimensions of the screws with variable and constant step on power characteristics of the screw-axifugal high-speed lowconsumption pumps of liquid rocket engines. Special attention has been given to the analysis of anticavitation properties of the pumps with screws of variable step and pumps with jointed screws. Based on the results of investigation, it has been ascertained that when using the joint screws and screws with variable step instead of the screws with constant step in the high-speed low-consumption screw-axifugal pumps of liquid rocket engines, the pump delivery head increases from 0.65 to 3.83%, the efficiency increases up to 1.7%. The use of jointed screw and screw of variable step as compared with the screw of constant step does not have any impact on cavitation properties of low-consumption crew-axifugal pumps of liquid rocket engines.
Key words: pressure characteristic, cavitation characteristic, inducers of the variable-pitch, continuous-pitch inducers, pump efficiency.

Bibliography:

1. Pre-burner operating method for rocket turbopump: Patent 6505463 USA: MPK F02K9/48 / William D. Kruse, Thomas J. Mueller, John J. Weede (USA); Northrop Grumman Corporation. No. 20020148215; claimed 17.01.2001; published 14.01.2003, Bulletin No. 09/761,957. 5 p.
2. Hybrid rocket motor using a turbopump to pressurize a liquid propellant constituent: Patent 6640536 USA: MPK F02K9/50, F02K9/48, F02K9/46, F02K9/72, F02K9/56 / Korey R. Kline, Kevin W. Smith, Eric E. Schmidt, Thomas O. Bales; Hy Pat Corporation (Miami, FL). No. 20030136111; claimed 22.01.2002; published 04.11.2003, Bulletin No. 10/054,646. – 11 p.
3. Chebayevsky V. F., Petrov V. I. Cavitation Characteristics of High-Speed Auger-Centrifugal Pumps. М., 1973. 152 p.
4. Petrov V. I., Chebayevsky V. F. Cavitation on High-Speed Impeller Pumps. М., 1982. 192 p.
5. Ovsyanikov V. B., Borovsky B. I. Theory and Calculation of Liquid Rocket Engines Generator Sets. М, 1986. 376 p.
6. Borovsky B. I. Power Parameters and Characteristics of High-Speed Impeller Pumps. М., 1989. 181 p.

Full Text(PDF) || Content 2018 (2)