Search Results for “Biliaiev M. M.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Sat, 11 Oct 2025 20:06:52 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Biliaiev M. M.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 2.1.2025 Justification of the parameters of a vertical screw conveyor for transporting lunar regolith https://journal.yuzhnoye.com/content_2025_1-en/annot_2_1_2025-en/ Wed, 27 Aug 2025 12:20:10 +0000 https://journal.yuzhnoye.com/?page_id=35479
, Biliaiev M.
]]>

2. Justification of the parameters of a vertical screw conveyor for transporting lunar regolith

Organization:

National Academy of Sciences of Ukraine, M. S. Poliakov Institute of geotechnical mechanics2, Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1

Page: Kosm. teh. Raket. vooruž. 2025 (1); 11-18

DOI: https://doi.org/10.33136/stma2025.01.011

Language: Ukrainian

Annotation: This paper aims to develop a scientifi cally grounded method for determining the key technical parameters of a vertical screw conveyor–specifi cally, throughput and the power requirement of the driving electric motor. These parameters depend on the density and porosity of the transported material, the screw’s geometric characteristics, and the gravitational fi eld at the transportation site. The study also explores potential design constraints when handling lunar regolith. To achieve this objective, the authors applied established equations for screw conveyor parameter calculations, fundamental principles of bulk material mechanics, key electrodynamic equations for asynchronous motors, and specifi c behavioral characteristics of bulk materials during vertical screw transport, which were also investigated experimentally. As a result, a novel method is proposed for calculating the technical specifi cations of a screw conveyor under lunar conditions, based on known geometric parameters, fi lling ratio, and electric motor characteristics. The study further examines the infl uence of the conveyor’s fi lling ratio on performance and identifi es geometric limitations imposed by the operational boundaries of the selected motor. Acceptable values for transport height, screw diameter, other geometric parameters, and achievable fi lling ratios for a given motor are determined. The study substantiates that vertical screw conveyors are the most promising solution for lunar regolith transport. These systems are compact, adaptable, capable of integration within tubes or underground installations, operate continuously, function autonomously, and can be powered by solar energy.

Key words: Moon, regolith, screw conveyor, electric motor, throughput, power

Bibliography:

1. Semеnenko Ye. V., Osadchaia N. V. Traditsionnyie i netraditsionnyie vidy energii, a takzhe kosmicheskiie poleznyie iskopaiemyie v okolozemnom prostranstve.
Nauchno-prakticheskaia konferentsiia «Sovremennyie raschetno-eksperimentalnyie metody opredeleniia kharakteristik raketno-kosmicheskoi techniki». m. Dnipro, 10 12 hrudnia 2019 r. S. 62 – 63. https://doi.org/10.1016/j.repl.2019.01.038

2. Jolliff B. L., Wieczorek M. A., Shearer C. K., Neal C. R. New Views of the Moon. Reviews in mineralogy and geochemistry. 2006. Vol. 60. 721 p. DOI: https://doi.org/10.2138/rmg.2006.60.0

3. Robert E. Grimm. Geophysical constaints on the lunar Procellarum KREEP Terrane. Journal of Geophysical Research: Planets. 2013. Vol. 118, Issue 4. P. 768-778. URL: https://agupubs-onlinelibrary-wiley-com.translate. goog/doi/10.1029/2012JE004114?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc
https://doi.org/10.1029/2012JE004114

4. Moon Village Association. URL: https://moon-villageassociation.org/about/

5. GLOBAL MOON VILLAGE. URL: https://space-architect.org/portfolio-item/ global-moon-village

6. Pustovharov А. А., Osynovyy G. G. Kontseptsiia shluzovogo modulia misiachnoi bazy. ХХV Mizhnarodna molodizhna naukovo-praktychna konferentsiia «Ludyna i kosmos».
Zbirnyk tez, NTSAOM, Dnipro, 2023. S. 86 – 87.

7. Berdnik A. I., Kaliapin M. D., Lysenko Yu. A., Bugaienko T. K. Mnogorazovyi lunnyi lender. Kosmichna nauka i technologiia. 2019. T. 25. № 5. S. 3-10.
https://doi.org/10.15407/knit2019.05.003

8. Semenenko P. V. , Groshelev D. G., Osinovyy G. G., Semenenko Ye. V., Osadchaia N. V. Sposoby transportirovki poleznykh iskopaiemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviiakh. XVII konferentsiia molodykh vchenykh «Heotekhnichni problemy rozrobky rodovyshch». m. Dnipro, 24 zhovtnia 2019 r. S 7.

9. Komatsu pobuduie ekskavator dlia roboty na Misiatsi. URL: https://www.autocentre.ua/ua/ news/concept/komatsu-postroit-ekskavator-dlya-raboty-na-lune-1380272.html.

10. Help NASA Design a Robot to Dig on the Moon. URL: https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/

11. Semenenko Ye. V. , Semenenko P. V., Hroshelev D. H. Tekhnolohichni parametry shneka dlia transportuvannia misiachnoho reholitu. Zbirka tez ХХVІ Mizhnarodnoi molodizhnoi naukovo-praktychnoi konferentsii «Ludyna i kosmos», Dnipro, 17 – 19 kvitnia, 2024. S. 132 – 133.

12. Semenenko Ye. V. , Biliaiev M. M., Semenenko P. V. Rozrakhunok parametriv systemy transportuvannia misiachnogo reholitu. Space Technology. Missile Armaments. Zb.
nauk.-tekhn. st. 2024. Vyp. 1. Dnipro: DP «KB «Pivdenne». S. 93 – 101.
https://doi.org/10.33136/stma2024.01.093

13. Bezruchko K. A. Review of potential sources for obtaining energy carriers and mineral raw materials in outer space. Heotekhnichna mekhanika. 2022. № 163. S.140-154. https://doi.org/10.15407/geotm2022.163.140

14. Nouman Khan, Muhammad Kaleem Sarwar, Muhammad Rashid, Hafiz Kamran Jalil Abbasi, Saif Haider, Muhammad Atiq Ur Rehman Tariq, Abdullah Nadeem, Muhammad Ahmad
Zulfiqar, Ali Salem, Nadhir Al-Ansari, Abdelaziz M. Okasha, Ahmed Z. Dewidar&Mohamed A. Mattar. Development of a sustainable portable Archimedes screw turbine for hydropower generation. Scientific Reports. 2025. Vol. 15. Issue 1. DOI
https://doi.org/10.1038/s41598-025-90634-8

15. Kumar Thakur N., Thakur R., Kashyap K., Goel B. Efficiency enhancement in Archimedes screw turbine by varying different input parameters – An experimental study.
Materials Today: Proceedings. 2022. Vol. 52, Part 3. P. 1161-1167.
https://doi.org/10.1016/j.matpr.2021.11.020

16. Kozyn A., Lubitz W. D. A power loss model for Archimedes screw generators. Renewable Energy. 2017, Vol. 108. P. 260-273.
https://doi.org/10.1016/j.renene.2017.02.062

17. Kulykivskii V. L., Paliichuk V. K., Borovskyi V. M. Doslidzhennia travmuvannia zerna hvyntovym konveierom. Konstruiuvannia, vyrobnytstvo ta ekspluatatsia silskohospodarskykh mashyn. 2016. Vyp. 46. S. 160-165.
https://doi.org/10.3233/EPL-46204

18. Lubin M. V., Tokarchuk O. A., Yaropud V. M. Osoblyvosti roboty krutopokhylenykh hvyntovykh transporteriv pry peremishchenni zernovoi produktsii. Tekhnika, enerhetyka, transport. APK. 216. № 3 (95). S. 235-240.

19. Bulkhakov B. M., Adamchuk V. V., Nadykto V. T., Trokhaniak O. M. Teoretychne obgruntuvannia parametriv hnuchkoho hvyntovoho konveiera dlia transportuvannia zernovykh materialiv. Visnyk ahrarnoi nauki. 2023. № 4 (841). S. 59 – 66.

20. Semenenko Ye. V. Nauchnyie osnovy tekhnologii gidromekhanizatsii otkrytoi razrabotki titan-tsyrkonovykh rossypei. Kiev: Naukova dumka, 2011. 232 s.

Downloads: 39
Abstract views: 
577
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Ashburn; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; El Monte; Ashburn; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Pompano Beach; Lakeside; Lakeside; Lakeside20
Ukraine Kyiv; Kyiv; Kyiv; Kremenchuk; Kremenchuk; Kremenchuk6
Vietnam; Bien Hoa; Hanoi3
Singapore Singapore; Singapore2
Germany Falkenstein; Frankfurt am Main2
Unknown Ryde1
Romania1
France Paris1
China Pekin1
Poland Poznan1
Slovakia1
2.1.2025 Justification of the parameters of a vertical screw conveyor for transporting lunar regolith
2.1.2025 Justification of the parameters of a vertical screw conveyor for transporting lunar regolith
2.1.2025 Justification of the parameters of a vertical screw conveyor for transporting lunar regolith

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM https://journal.yuzhnoye.com/content_2024_1-en/annot_11_1_2024-en/ Mon, 17 Jun 2024 08:41:21 +0000 https://journal.yuzhnoye.com/?page_id=35014
1 , Biliaiev M. Semenenko Ye.V., Biliaiev M. Parameters calculation of the lunar regolith transport system Автори: Semenenko Ye.V., Biliaiev M. Parameters calculation of the lunar regolith transport system Автори: Semenenko Ye.V., Biliaiev M. Parameters calculation of the lunar regolith transport system Автори: Semenenko Ye.V., Biliaiev M. Parameters calculation of the lunar regolith transport system Автори: Semenenko Ye.V., Biliaiev M.
]]>

11. Parameters calculation of the lunar regolith transport system

Organization:

National Academy of Sciences of Ukraine, M.S. Poliakov Institute of geotechnical mechanics1; Ukrainian State University of Science and Technologies2; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2024, (1); 93-101

DOI: https://doi.org/10.33136/stma2024.01.093

Language: Ukrainian

Annotation: The objective of this article is to develop a scientifically proven method of calculation of the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electrical motor, for different densities and porosities of conveyed materials, the geometrical parameters of the auger, and the specificity of the gravitational fields at the place of transportation. Another objective is to investigate potential limitations of the auger parameters when transporting lunar regolith. To reach these objectives, the known relations for calculating the auger conveyor parameters were applied, as well as the fundamental laws of the granular media mechanics, the principal equations of asynchronous motor electrodynamics, and the behavior of granular media when moving it with the auger conveyor, experimentally studied by the domestic authors. It gave the possibility, for the first time for the lunar environment, to suggest a procedure to calculate the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electric motor, using known geometrical parameters of the mainline and pipeline, the auger conveyor filling ratio and the parameters of the selected electrical motor. It gave the possibilities to study how the filling ratio of the auger conveyor influences its principal performance parameters and determine potential limitations of the geometrical parameters and the filling ratios of auger conveyors according to the parameters and features of the selected electrical motor. The allowable transportation distances, diameters, other geometrical parameters of auger conveyors, and conveyor filling ratios with the selected electrical motor have been determined. It has been proven that the solutions based on using auger conveyors would be most rational for transporting loose lunar regolith over the Moon’s surface because the auger conveyors are compact and adaptable, and they can be placed inside tubes and laid under the day surface, thereby ensuring the continuous transportation process. Furthermore, they are capable of autonomous operation and can use the electricity produced by solar arrays.

Key words: Moon, regolith, auger, electric motor, capacity, power

Bibliography:

1. Pustovgarov A. A., Osinoviy G. G. Kontseptsiya shlyuzovogo modulya misyachnoi bazy. ХХV Mizhnarodna molodizhna naukovo-praktychna conf. «Lyudyna i cosmos». Zbirnyk tez, NTsAOM, Dnipro, 2023. S. 86 – 87.
2. Semenenko P. V. Sposoby transortirovki poleznykh iskopaemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviyukh. P. V. Semenenko, D. G. Groshelev, G. G. Osinoviy, Ye. V. Semenenko, N. V. Osadchaya. XVII conf. molodykh vchenykh «Geotechnichni problemy rozrobky rodovysch». m. Dnipro, 24 zhovtnya 2019 r. S. 7.
3. Berdnik A. I. Mnogorazoviy lunniy lander. A. I. Berdnyk, M. D. Kalyapin, Yu. A. Lysenko, T. K. Bugaenko. Raketno-kosmichny complexy. 2019. T. 25. №5:3-10. ISSN 1561-8889. https://doi.org/10.15407/knit2019.05.003
4. Semenenko Ye. V., Osadchaya N. V. Traditsionnye i netraditsionnye vydy energii, a takzhe kosmicheskie poleznye iskopaemye v okolozemnom prostranstve. Nauch.-parakt. conf. «Sovremennye raschetno-experimentalnye metody opredeleniya characteristic raketno-kosmicheskoy techniki». m. Dnipro, 10 – 12 grudnya 2019 r. S. 62 – 63.
5. Komatsu pobudue excavator dlya roboty na Misyatsi https://www.autocentre.ua/ua/ news/concept/komatsu-postroit-ekskavator-dlya-raboty-na-lune-1380272.html.
6. Help NASA Design a Robot to Dig on the Moon https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/
7. Robert E. Grimm. Geophysical constaints on the lunar Procellarum KREEP Terrane. Vol. 118, Issue 4. April 2013. P. 768-778. https://agupubs-onlinelibrary-wiley-com.translate. goog/doi/10.1029/2012JE004114?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc
https://doi.org/10.1029/2012JE004114
8. Chen Li. A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector. Kuixian Wei, Yang Li, Wenhui Ma, Yun Lei, Han Yu, Jianzhong Liu. Journal of Rare Earths Vol. 41, Issue 9, September 2023, P. 1429-1436. https://www-sciencedirect-com.translate.goog/science/article/ abs/pii/S1002072122001910?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc https://doi. org/10.1016/j.jre.2022.07.002
9. Moon Village Association https://moon-villageassociation.org/about/
10. GLOBAL MOON VILLAGE. https://space-architect.org/portfolio-item/ global-moon-village//
11. Just G. H. Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilization (ISRU) and recommendations for future excavation experiments. G. H. Just, Smith K., Joy K. H., Roy M. J. https://doi.org/10.1016/j.pss.2019.104746
https://www.sciencedirect.com/science/article/pii/S003206331930162X
12. Anthony J. Analysis of Lunar Regolith Thermal Energy Storage. Anthony J. Colozza Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio NASA Contractor Report 189073. November 1991. S-9 https://denning.atmos.colostate.edu/readings/ lunar.regolith.heat.transfer.pdf
13. Obgruntuvannya vykorystannya shneka dlya utilizatsii vidkhodiv vuglezbagachennya z mozhlyvistyu pidvyschennya bezpeki energetychnoi systemy pidpriemstv. SLobodyannikova I. L., Podolyak K. K., Tepla T. D. Materialy XХІ Mizhnarod. conf. molodykh vchennykh (26 zhovt. 2023 roku, m. Dnipro). Dnipro: IGTM im. M.S. Polyakova NAN Ukrainy, 2023. S. 50–55.
14. Kulikivskiy V. L., Paliychuk V. K., Borovskiy V. M. Doslidzhennya travmuvannya zerna gvintovym konveerom. Konstryuvannya, vyrobnitstvo ta exspluatatsiya silskogospodarskykh mashin. 2016. Vyp. 46. S. 160 – 165. https://doi.org/10.3233/EPL-46204
14. Lyubin M. V., Tokarchuk O. A., Yaropud V. M. Osoblyvosti roboty krutopokhylennykh gvyntovykh transporterov pri peremischenni zernovoi produktsii. Tekhnika, energetika, transport APK. 216. № 3(95). S. 235 – 240.
15. Gevko R. B., Vitroviy A. O., Pik A. I. Pidvyschennya tekhnichnogo rivnya gnuchkykh gvyntovykh konveeriv. Ternopil: Aston, 2012. 204 s.
16. Bulgakov B. M., Adamchyuk V. V., Nadikto V. T., Trokhanyak O. M. Teoretichne obgruntuvannya parametriv gnuchkogo gvintovogo konveera dlya transportuvannya zernovykh materialiv. Visnyk agrarnoi nauki. 2023. № 4(841). S. 59 – 66.
17. New Views of the moon. Reviews in mineralogy and geochemistry. Eds. Joliff B.L., Wieczorek M.A., Shearer C.K., Neal C.R. Mineralogical Society of America. Reviews in mineralogy and geochemistry. 2006. Vol. 60. 721 p. DOI: 10.2138/rmg.2006.60.
18. Semenenko Ye. V. Nauchnye osnovy technologiy hydromechanizatsii otkrytoy razrabotki titan-cyrkonovykh rossypey. Yevgeniy Vladimirovich Semenenko. Kiev: Nauk. dumka, 2011. 232 s.

Downloads: 117
Abstract views: 
2020
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Denver; Dallas; Los Angeles; Las Vegas; Buffalo;; Chicago; Las Vegas; Columbus; Ashburn; Ashburn; Columbus; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Los Angeles; San Francisco; El Monte; El Monte; El Monte; El Monte; Ashburn; Buffalo; Ashburn; Seattle; Ashburn; Mountain View; Houston; Houston; Houston; Ashburn; Mountain View;; Portland; Portland; Portland; San Mateo; San Mateo; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Pompano Beach; Lakeside; Lakeside; Lakeside; Los Angeles; Seattle; Seattle72
China Pekin; Pekin; Changsha; Tianjin;; Shenzhen; Yiwu; Pekin; Pekin9
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany Falkenstein; Falkenstein; Falkenstein; Düsseldorf; Frankfurt am Main; Falkenstein; Leipzig; Leipzig8
Unknown; Hong Kong; Hong Kong;4
Canada Toronto; Toronto; Toronto; Toronto4
France; Ivry-sur-Seine; Paris3
India Chiplun1
The Republic of Korea Seoul1
Vietnam Hanoi1
Brazil Sumaré1
Israel Haifa1
Great Britain Leicester1
Netherlands Amsterdam1
Ukraine Kremenchuk1
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>