Search Results for “Borisenko S. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 21:31:23 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Borisenko S. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge https://journal.yuzhnoye.com/content_2024_1-en/annot_12_1_2024-en/ Mon, 17 Jun 2024 11:36:02 +0000 https://journal.yuzhnoye.com/?page_id=35070
Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I.
]]>

12. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Ukrainian State University of Science and Technologies2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 102-113

DOI: https://doi.org/10.33136/stma2024.01.102

Language: Ukrainian

Annotation: Steel hardening technology is considered, which implies modification of the steel surface with the method of ion-plasma nitriding in glow discharge. Ion-plasma nitriding is a multi-factor process, which requires the study of the influence of nitriding process conditions on the structure of modified layers, which, in its turn, determines their mechanical properties. The subjects of research included: austenitic steel 12X18Н10T, carbon steel Ст3 and structural steel 45. There were two conditions of plasma creation during the research: free location of samples on the surface of the cathode (configuration I) and inside the hollow cathode (configuration II). Optimal parameters of the ion-plasma nitriding process have been determined, which provide stability of the process and create conditions for intensive diffusion of nitrogen into the steel surface. Hydrogen was added to the argon-nitrogen gaseous medium to intensify the nitriding process. Working pressure in the chamber was maintained within the range of 250-300 Pa, the duration of the process was 120 minutes. Comparative characteristics of the structure and microhardness of the modified surfaces of the steels under study for two ion-plasma nitriding technologies are presented. Metallographic examination of the structure of the surface modified layers in the cross section showed the presence of the laminated nitrided layer, which consists of different phases and has different depths, depending on the material of the sample and treatment mode. Nitrided layer of 12Х18Н10Т steel consisted of four sublayers: upper “white” nitride layer, double diffuse layer and lower transition layer. The total depth of the nitrided layer after the specified treatment time reached 23 μm, use of hollow cathode increased it by 26% to 29 μm. The nitrided layers of steel Ст3 and steel 45 consisted of two sublayers – thick “white” nitride layer and general diffuse layer with a thickness of about 18 μm. The microhardness of the nitrided layer of steel Ст3 was 480 HV, increasing by 2,5 times, and for steel 45 was 440 HV, increasing by 1,7 times. The use of hollow cathode for these steels reduces the depth of the nitrided layer, but at the same time the microhardness increases due to the formation of a thicker and denser nitride layer on the surface. The results of the conducted research can be used to strengthen the surfaces of the steel parts in rocket and space technology, applying high-strength coatings.

Key words: ion nitriding, glow discharge, cross-sectional layer structure, hardening, microhardness

Bibliography:

1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49. https://doi.org/10.15587/1729-4061.2016.69809
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12. https://doi.org/10.23939/law2019.22.012
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108. https://doi.org/10.15421/332108
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52. https://doi.org/10.15587/2312-8372.2012.4763
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35. https://doi.org/10.47813/2782-2818-2021-1-3-30-35
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p. https://doi.org/10.1007/978-3-319-43068-3
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283. https://doi.org/10.1016/j.apsusc.2014.04.142
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68. https://doi.org/10.15587/1729-4061.2016.63659
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.

Downloads: 14
Abstract views: 
1584
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Chicago; Ashburn; Dallas; Seattle; Portland; Seattle7
Germany Falkenstein; Falkenstein2
France1
Unknown1
China Shenzhen1
Ukraine Kremenchuk1
Slovakia1
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
25.2.2017 Vacuum Conditions Simulation Criteria https://journal.yuzhnoye.com/content_2017_2/annot_25_2_2017-en/ Wed, 09 Aug 2023 12:46:44 +0000 https://journal.yuzhnoye.com/?page_id=29958
Vacuum Conditions Simulation Criteria Authors: Logvinenko A. 2017 (2); 141-145 Language: Russian Annotation: The paper shows the peculiarities of modeling the vacuum conditions to simulate space environment when conducting various test types. A., Oreshchenko V. Testing of Pneumohydraulic Subsystems of Propulsion Systems of LV and SC with LRE. Scientific Basis of Vacuum Engineering. Borisenko A. Avduyevsky V. Investigation of Freezing Conditions of Liquid Nitrogen in Manifolds at Flowing into Vacuum / S. (2017) "Vacuum Conditions Simulation Criteria" Космическая техника. quot;Vacuum Conditions Simulation Criteria", Космическая техника. Missile armaments, vol.
]]>

25. Vacuum Conditions Simulation Criteria

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 141-145

Language: Russian

Annotation: The paper shows the peculiarities of modeling the vacuum conditions to simulate space environment when conducting various test types. Based on generalized experience, the practical criteria are recommended with consideration for accompanying physical phenomina.

Key words:

Bibliography:
1. Rozanov L. N. Vacuum Engineering. М., 1990. 320 p.
2. Polukhin D. A., Oreshchenko V. M., Morozov V. A. Testing of Pneumohydraulic Subsystems of Propulsion Systems of LV and SC with LRE. М., 1987.
3. Deshman S. Scientific Basis of Vacuum Engineering. М., 1970.
4. Borisenko A. I. Gas Dynamics of Engines. М., 1962. 793 p.
5. Avduyevsky V. S. Fundamentals of Heat Transfer in Aerospace Engineering. М., 1975. 623 p.
6. Burdakov V. P., Danilov Y. I. External Resources and Cosmonautics. М., 1976. 551 p.
7. Kuda S. A. et al. Investigation of Freezing Conditions of Liquid Nitrogen in Manifolds at Flowing into Vacuum / S. A. Kuda, Zh. V. Kabakova, A. I. Logvinenko, V. I. Porubaimekh. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2007. Issue 2. P. 58 – 67.
8. Patent 110307 Ukraine, MPK F25J 1/00. Method of Producing Overcooled Cryogenic Liquid / D. I. Gudymenko, S. A. Kuda, А. I. Logvinenko, V. I. Porubaimekh (Ukraine); Applicant and patent holder Yuzhnoye SDO. No 201601457; Claimed 18.02.2016; Published 10.10.2016, Bulletin No. 19.
Downloads: 41
Abstract views: 
581
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Unknown Brisbane;2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
25.2.2017 Vacuum Conditions Simulation Criteria
25.2.2017 Vacuum Conditions Simulation Criteria
25.2.2017 Vacuum Conditions Simulation Criteria
]]>
10.1.2016 Development of Winding Pattern during Calculation of Composite Case Winding Programs https://journal.yuzhnoye.com/content_2016_1/annot_10_1_2016-en/ Tue, 23 May 2023 13:05:37 +0000 https://journal.yuzhnoye.com/?page_id=27619
Development of Winding Pattern during Calculation of Composite Case Winding Programs Authors: Borisenko S. Content 2016 (1) Downloads: 33 Abstract views: 448 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn 20 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Unknown Melbourne; 2 Ukraine Dnipro; Dnipro 2 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Borisenko S. Development of Winding Pattern during Calculation of Composite Case Winding Programs Автори: Borisenko S.
]]>

10. Development of Winding Pattern during Calculation of Composite Case Winding Programs

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Kharkiv Aviation Institute, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2016 (1); 63-67

Language: Russian

Annotation: The mathematical model of calculation of winding pattern developed by the authors for calculation of composite case winding programs is presented.

Key words:

Bibliography:
Downloads: 33
Abstract views: 
448
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Melbourne;2
Ukraine Dnipro; Dnipro2
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
10.1.2016 Development of Winding Pattern during Calculation of Composite Case Winding Programs
10.1.2016 Development of Winding Pattern during Calculation of Composite Case Winding Programs
10.1.2016 Development of Winding Pattern during Calculation of Composite Case Winding Programs
]]>