Search Results for “Degtyarev O. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 20:59:24 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Degtyarev O. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation https://journal.yuzhnoye.com/content_2020_1-en/annot_1_1_2020-en/ Thu, 20 Jun 2024 11:13:04 +0000 https://test8.yuzhnoye.com/?page_id=27120
2 , Degtyarev O. P., Degtyarev O. P., Degtyarev O. P., Degtyarev O. P., Degtyarev O. P., Degtyarev O. P., Degtyarev O.
]]>

1. Solving a problem of optimum curves of descent using the enhanced Euler equation

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The National Academy of Sciences of Ukraine, Kyiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 3-12

DOI: https://doi.org/10.33136/stma2020.01.003

Language: Russian

Annotation: The purpose of this study is the enhancement of Euler equation possibilities in order to solve the brachistochrone problem that is the determination of a curve of fastest descent. There are two circumstances: 1) the first integral of an Euler equation does not contain a partial derivative of integrand with respect to y in an explicit form; 2) when the classical Euler equation is derived, only the second term of integrand is integrated by parts. This allowed formulating a problem of determination of new conditions of functional extremality. It is assumed that the integrand of the first variation of a functional is equal to zero. Taking into account this pro vision and some other assumptions, the procedures have been determined for simultaneous application of the Euler equation and its analogue being non-invariant in relation to the coordinate system. The brachistochrone problem was solved using these equations: the curves that satisfy the conditions of weak minimum optimality were plotted. The time of a material point’s descent along the suggested curves and the classic extremals was numerically compared. It is shown that the application of suggested curves ensures short descent time as compared to the classic extremals.

Key words: first variation of a functional, joint application of extremality conditions, non-invariance in relation to the coordinate system, parametric shape of the second variation, optimum curves of descent

Bibliography:

1. Bliss G. A. Lektsii po variatsionnomu ischisleniiu. М., 1960. 462 s.
2. Yang L. Lektsii po variatsionnomu ischisleniiu i teorii optimalnogo uravneniia. М.,1974. 488 s.
3. Elsgolts L. E. Differentsialnye uravneniia i variatsionnoe ischislenie. М., 1965. 420 s.
4. Teoriia optimalnykh aerodinamicheskikh form / pod red. А. Miele. М., 1969. 507 s.
5. Shekhovtsov V. S. O minimalnom aerodinamicheskom soprotivlenii tela vrashcheniia pri nulevom ugle ataki v giperzvukovom neviazkom potoke. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: Sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2016. Vyp. 2. S. 3–8.
6. Sumbatov А. S. Zadacha o brakhistokhrone (klassifikatsiia obobshchenii i nekotorye poslednie resultaty). Trudy MFTI. 2017. T. 9, №3 (35). S. 66–75.

Downloads: 42
Abstract views: 
1463
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Germany Frankfurt am Main; Falkenstein2
Ukraine Dnipro; Odessa2
Belgium Brussels1
Finland Helsinki1
Unknown1
India Panjim1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation

Keywords cloud

]]>
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems https://journal.yuzhnoye.com/content_2020_1-en/annot_2_1_2020-en/ https://journal.yuzhnoye.com/?page_id=31001
1 , Klochkov A. Degtyarev A. VohnianaVilkha”: nova vysokotochna systema zalpovoho vohnyu. Gurov S. Matematicheskaia teoriia optimalnykh protsesov. Tarasov Е. Shcheverov D. Proektirovanie bespilotnykh letatelnykh apparatov. Siniukov А. М., Volkov L. I., Lvov А. Siniukova. Burov М. I., Volkov L. Kopytova. V., Baranov E. I., Klochkov A. S., Morozov A. S., Alpatov A. Dnepropetrovsk, 2017. Alpatov A. Alpatov A. posobie dlia vuzov. Teoreticheskie osnovy oroektirovaniia RDTT. Teoriia i raschet raketnykh dvigatelei tverdogo topliva: uchebnik dlia mashinostroitelnykh vuzov. Shishkov А. I., Klochkov A. I., Klochkov A. I., Klochkov A. I., Klochkov A. I., Klochkov A.
]]>

2. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 13-25

DOI: https://doi.org/10.33136/stma2020.01.013

Language: Russian

Annotation: The scientific and methodological propositions for the designing single-stage guided missiles with the solid rocket motors for advanced multiple launch rocket systems are defined. The guided missiles of multiple launch rocket system are intended for delivering munitions to the given spatial point with required and specified kinematic motion parameters at the end of flight. The aim of the article is an analysis of the development trends of the guided missiles with the solid rocket motors for the multiple launch rocket systems, identifying the characteristics and requirements for the flight trajectories, design parameters, control programs, overall dimensions and mass characteristics, structural layout and aerodynamic schemes of missiles. The formalization of the complex task to optimize design parameters, trajectory parameters and motion control programs for the guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories is given. The complex task belongs to a problem of the optimal control theory with limitations in form of equa lity, inequality and differential constraints. To simplify the problem, an approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as a material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of the criterion function that was used for determination of the optimal parameters, programs and characteristics. The mathematical model of the guided missile provides adequate accuracy for design study to determine depending on the main design parameters: overall dimensions and mass characteristics of the guided missile in general and its structural comp onents and subsystems; power, thrust and consumption characteristics of the rocket motor; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by determining design and trajectory parameters, overall dimensions and mass characteristics, power and ballistic characteristics of two guided missiles with wings for advanced multiple launch rocket systems produced by the People’s Republic of China, using the limited amount of information available in the product catalog.

Key words: multiple launch rocket systems (MLRS), complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the guided missiles

Bibliography:
1. Degtyarev A. V. Raketnaia tekhnika. Problemy i perspektivy: izbrannye nauchno-tekhnicheskie publikatsii. Dnepropetrovsk, 2014. 420 s.
2. Pro zatverdzhennia Poriadku zdiisnennia derzhavnoho kontriliu za mizhnarodnymy peredachamy tovariv podviinoho vykorystannia:Postanova Kabinetu Ministriv Ukrainy vid 28 sichnia 2004 r. № 86. Date: 29.11.2018. URL: https://zakon.rada.gov.ua/laws/show/86-2004-%D0%BF (Access date 01.09.2019).
3. Catalogue China Aerospase Long-march International. February, 2017. 136 p.
4. Reaktivnye sistemy zalpovogo ognia zarubezhnykh stran: obzor po materialam otkrytoi pechati za 1987–2016 gg. i interneta. Dnipro, 2016. Ч. I. 205 s.
5. Upravliaemye OTRK i TRK stran mira: obzor po materialam otkrytoi otechestvennoi i zarubezhnoi pechati za 2008–2014 gg. i interneta. Dnipro, 2014. 162 s.
6. Tail controlled rocket demonstrates near-vertical impact at extended range. URL: https://www.army.mil/article-amp/207357/tail_controlled_rocket_demonstrates_near_vertical_impact_at_extended_range (Access date 01.09.2019).
7. SY-400 Short-Range Ballistic Missile. URL: http://www.military-today.com/missiles/sy_400.htm (Access date 01.09.2019).
8. Vohniana “Vilkha”: nova vysokotochna systema zalpovoho vohnyu. Vpershe – detalno. URL: https://defence-ua.com/index.php/statti/4588-vohnyana-vilkha-nova-vysokotochna-systema-zalpovoho-vohnyu-vpershe-detalno (Access date 01.09.2019).
9. Gurov S. V. Reaktivnye sistemy zalpovogo ognia: obzor. 1-е izd. Tula, 2006. 432 s.
10. The new M30A1 GMLRS Alternate Warhead to replace cluster bombs for US Army Central 71601171. URL: https://www.armyrecognition.com/weapons_defence_industry_military_technology_uk/the_new_m30a1_gmlrs_alternate_warhead_to_replace_cluster_bombs_for_us_army_central_71601171.html (Access date 01.09.2019).
11. High-Mobility Artillery Rocket System (HIMARS), a member of MLRS family. URL: https://army-technology.com/projects/himars/ (Access date 01.09.2019).
12. SR-5 Multiple Launch Rocket System. URL: http://www.military-today.com/artillery/sr5.htm (Access date 01.09.2019).
13. Effectivnost slozhnykh system. Dinamicheskie modeli / V. А. Vinogradov, V. А. Hrushchansky, S. S. Dovhodush i dr. М., 1989. 285 s.
14. Ilichev А. V., Volkov V. D., Hrushchansky V. А. Effectivnost proektiruemykh elementov slozhnykh system: ucheb. posobie. М., 1982. 280 s.
15. Krotov V. F., Gurman V. I. Metody I zadachi optimalnogo upravleniia. М., 1973. 446 s.
16. Pontriagin L. S., Boltiansky V. G., Gamkrelidze R. V., Mishchenko Е. F. Matematicheskaia teoriia optimalnykh protsesov. М., 1969. 385 s.
17. Tarasov Е. V. Algoritm optimalnogo proektirovaniia letatelnogo apparata. М., 1970. 364 s.
18. Shcheverov D. N. Proektirovanie bespilotnykh letatelnykh apparatov. М., 1978. 264 s.
19. Siniukov А. М., Volkov L. I., Lvov А. I., Shishkevich А. М. Ballisticheskaia raketa na tverdom toplive / pod red. А. М. Siniukova. М., 1972. 511 s.
20. Burov М. А., Varfolomeev V. I., Volkov L. I. Proektirovanie i ispytanie ballisticheskikh raket / pod red. V. I. Varfolomeeva, М. I. Kopytova. М., 1970. 392 s.
21. Siutkina-Doronina S. V. K voprosu optimizatsii proektnykh parametrov i programm upravleniia raketnogo ob’ekta s raketnym dvigatelem na tverdom toplive. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia. 2017. № 2 (137). S. 44–59.
22. Aksenenko A. V., Baranov E. Yu., Hursky A. I., Klochkov A. S., Morozov A. S., Alpatov A. P., Senkin V. S., Siutkina-Doronina S. V. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, parametrov traektorii i programm upravleniia dvizheniem raketnogo ob’ekta. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2018. Vyp. 2 (116). S. 101–116. https://doi.org/10.33136/stma2018.02.101
23. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, programm upravleniia, ballisticheskikh, energeticheskikh i gabaritno-massovykh kharakteristik upravliaemykh raketnykh ob’ektov, osushchestvliaiushchikh dvizhenie po aeroballisticheskoi traektorii: otchet po NIR / ITM NANU i GKAU, GP “KB “Yuzhnoye”. Dnepropetrovsk, 2017. 159 S.
24. Senkin V. S. K Vyboru programm upravleniia dvizheniem raketnogo ob’ekta po ballisticheskoi traektorii. Tekhnicheskaia mekhanika. 2018. № 1. S. 48–59.
25. Alpatov A. P., Senkin V. S. Metodicheskoe obespechenie dlia vybora oblika, optimizatsii proektnykh parametrov i programm upravleniia poletom rakety-nositelia. Tekhnicheskaia mekhanika. 2013. № 4. S. 146–161.
26. Alpatov A. P., Senkin V. S. Kompleksnaia zadacha optimizatsii osnovnykh proektnykh parametrov i programm upravleniia dvizheniem raket kosmicheskogo naznacheniia. Tekhnicheskaia mekhanika. 2011. № 4. S. 98–113.
27. Senkin V. S. Optimizatsiia proektnykh parametrov rakety-nositelia sverkhlegkogo klassa. Tekhnicheskaia mekhanika. 2009. № 1. S. 80–88.
28. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
29. Razumev V. F., Kovalev B. K. Osnovy proektirovaniia ballisticheskikh raket na tverdom toplive: ucheb. posobie dlia vuzov. М., 1976. 356 s.
30. Erokhin B. Т. Teoreticheskie osnovy oroektirovaniia RDTT. М., 1982. 206 s.
31. Abugov D. I., Bobylev V. М. Teoriia i raschet raketnykh dvigatelei tverdogo topliva: uchebnik dlia mashinostroitelnykh vuzov. М., 1987. 272 s.
32. Shishkov А. А. Gasodinamika porokhovykh raketnykh dvigatelei: inzhenernye metody rascheta. М., 1974. 156 s.
Downloads: 46
Abstract views: 
3667
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Matawan; Baltimore; Plano; Miami; Columbus; Ashburn; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Boardman; Seattle25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Sumy; Kovel'; Dnipro; Dnipro5
Latvia Riga; Riga2
China Shanghai1
Finland Helsinki1
Unknown1
India Mumbai1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Keywords cloud

]]>
2.1.2024 New and advanced liquid rocket engines of the Yuzhnoye SDO https://journal.yuzhnoye.com/content_2024_1-en/annot_2_1_2024-en/ Wed, 12 Jun 2024 15:04:41 +0000 https://journal.yuzhnoye.com/?page_id=34964
vooruž. Moreover, liquid engines design office was assigned with manufacturing and testing of the main rocket engines, developed by NPO Energomash and to be installed on Yuzhnoye-developed launch vehicles. Seventeen of them were commercially produced by Yuzhmash PA and installed on launch vehicles. Nowadays Yuzhnoye propulsion experts keep working on development of the advanced liquid rocket engines powered both by cryogenic and hypergolic propellants, which satisfy the majority of launch service market demands. Konyukhova, kand. O., Shulga V. Degtyareva. O., Shulga V. O., Shulga V. Missile armaments, vol. O., Shulga V. O., Shulga V. O., Shulga V. O., Shulga V.
]]>

2. New and advanced liquid rocket engines of the Yuzhnoye SDO

Page: Kosm. teh. Raket. vooruž. 2024, (1); 9-18

DOI: https://doi.org/10.33136/stma2024.01.009

Language: Ukrainian

Annotation: Specialized design office for liquid engines was established on July 22, 1958 to develop engines and propulsion systems, powered by liquid propellants to be installed on the combat missile systems and integrated launch vehicles (LV), developed by Yuzhnoye SDO. Moreover, liquid engines design office was assigned with manufacturing and testing of the main rocket engines, developed by NPO Energomash and to be installed on Yuzhnoye-developed launch vehicles. Over the past 66 years Yuzhnoye SDO has developed more than 40 liquid rocket engines (LRE) of various purpose, designed both to gas-generator cycle and to staged combustion cycle. Seventeen of them were commercially produced by Yuzhmash PA and installed on launch vehicles. Nowadays Yuzhnoye propulsion experts keep working on development of the advanced liquid rocket engines powered both by cryogenic and hypergolic propellants, which satisfy the majority of launch service market demands. Within the framework of extensive cooperation with foreign space companies, on a contract basis, Yuzhnoye propulsion experts are working on the design and development testing of the liquid rocket engines, as well as their components. The accumulated vast experience in the development of liquid rocket engines nowadays enables high scientific and technical level in the creation of up-to-date engines, demanded in the world market. Significant steps in this area have been made by the experts from the Yuzhnoye propulsion division and then subsequent manufacture and delivery by Yuzhmash PA of the engine intended for the European rocket Vega Stage 4; and designing the individual components for the engines with thrusts ranging from 500 kgf to 200 tf ordered by foreign customers. This article provides the review of current and scheduled activities of the Yuzhnoye SDO to develop the liquid rocket engines within the thrust ranges from ~ 40 kgf to ~ 500 tf.

Key words: LOX-kerosene liquid rocket engines, hypergolic propellant liquid rocket engines, staged combustion cycle, main rocket engine, thrust, specific thrust impulse.

Bibliography:
  1. Zhidkostnye raketnye dvigateli, dvigatelnye ustanovki, bortovye istochniki moschnosti, razrabotannye KB dvigatelnykh ustanovok GP«KB «Yuzhnoye». Za nauk. red. akad. NAN Ukrainy S.M. Konyukhova, kand. tekhn. nauk V.M. Shnyakina. Dnipropetrovsk: DP «KB «Pivdenne», 2008. 466 ark.
  2. Prokopchyuk O. O., Shulga V. A., Khromyuk D. S., Sintyuk V. O. Zhidkostnye raketnye dvigateli GP«KB «Yuzhnoye»: nauk.-tekhn. zbirnyk. Za nauk. red. akademika NAN Ukrainy
    O. V. Degtyareva. Dnipro: ART-PRES, 2019. 440 ark.
Downloads: 25
Abstract views: 
943
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Buffalo; San Jose; Chicago; Chicago; Chicago; Saint Louis; Saint Louis; Chicago; Dallas; Los Angeles; Los Angeles; Ashburn; Los Angeles; San Francisco; Portland; Ashburn17
Germany Falkenstein; Düsseldorf; Falkenstein3
France1
China Shenzhen1
Canada Toronto1
Hungary Budapest1
Ukraine Kremenchuk1
2.1.2024 New and advanced liquid rocket engines of  the Yuzhnoye SDO
2.1.2024 New and advanced liquid rocket engines of  the Yuzhnoye SDO
2.1.2024 New and advanced liquid rocket engines of  the Yuzhnoye SDO

Keywords cloud

]]>
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight https://journal.yuzhnoye.com/content_2020_1-en/annot_6_1_2020-en/ Wed, 13 Sep 2023 06:19:43 +0000 https://journal.yuzhnoye.com/?page_id=31028
Methods for estimating the probability of their maximal approach in flight Authors: Degtyarev O. Degtyarev O. Content 2020 (1) Downloads: 37 Abstract views: 825 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Matawan; Baltimore; Boydton; Plano; Columbus; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Seattle; San Mateo; San Mateo; Des Moines; Boardman; Ashburn 19 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 7 India Bengaluru; Mumbai 2 Canada Toronto; Monreale 2 Cambodia Phnom Penh 1 Finland Helsinki 1 Unknown 1 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Degtyarev O. Degtyarev O. Methods for estimating the probability of their maximal approach in flight Автори: Degtyarev O.
]]>

6. Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 57-75

DOI: https://doi.org/10.33136/stma2020.01.057

Language: Russian

Annotation: The methods are proposed (analytical and numerical based on motion equations integration) to evaluate probability of first approaches to small distances of satellites of cluster uncontrolled in flight in long time intervals. As the number of satellites injected into area of one base orbit grows, the necessity of evaluating such probability constantly increases – already at present their number in some cases exceeds hundred units. In flight, such satellites form in limited area of space rather compact cluster; the satellite density in such cluster exceeds by many orders the density of operating space objects at their functioning altitudes. Due to somewhat different satellite orbiting periods, the distances between them in flight direction continuously change, different precession motion of orbital planes determines their angular spread – approach in flight. It was determined that maximal probability of approach of whatever pair of satellites of cluster to small distances is the case if in some neighborhood of numbers of their flight orbits, simultaneously two events are realized – the satellites approach to minimal distances in flight direction and angular spread of their orb ital planes is close to zero. The conditions are determined of separation of whatever two satellites of cluster (their separation directions and velocities) – that ensure simultaneous realization of the above events in some neighborhood of number of flight orbits. The analytical relations were obtained that allow determining the corresponding numerical values of satellite approach parameters. For particular case – satellite separation at the equator – maximal probability of approach of two satellites of cluster to small distances is the case when their relative separation velocities are equal in flight direction and in perpendicular to this direction. For the option of injecting 12 satellites to the area of one base orbit of ~ 650 km altitude and  98 inclination, the parameters of satellites separation at the equator were determined that realize their uniform dispersion in the first orbits of autonomous flight. For 2 pairs (out of 66 formed for considered injection case) the conditions of maximal probability of their first approaches to small distances are realized. Using two developed methods evaluations of such probability were obtained.

Key words: mutually relative motion of the satellite cluster, sun-synchronous orbits, satellites approach probability

Bibliography:
1. Venttsel’ Е. S. Teoriia veroiatnostei. М., 1958. 464 s.
2. Gerasiuta N. F., Lebedev А. А. Ballistika raket. М., 1970. 244 s.
3. GOST 25645, 115-84. Model’ plotnosti dlia ballisticheskogo obespecheniia poletov ISZ. М., 1985.
4. Degtyarev A. V., Sheptun A. D. Proektno-ballisticheskie resheniia po gruppovym zapuskam kosmicheskikh apparatov v raion neskolkikh bazovykh orbit. Kosmicheskaia tekhnika. Raketnoe vooruzhenie. 2011. Vyp. 2. S. 37–51.
5. Degtyarev A. V., Sheptun A. D., Vorobiova I. A. Organizatsiia ravnomernogo raskhozhdeniia gruppirovki malykh sputnikov posle otdeleniia i ikh priemlemogo razneseniia na etapakh posleduiushchikh sblizhenii. Kosmichna nauka i tekhnologiia. 2016. № 3. S. 25–31. https://doi.org/10.15407/knit2016.03.025
6. Kugaenko B. V., Eliasberg P. E. Evoliutsiia pochti krugovykh orbit ISZ pod vliianiem zonalnykh garmonik. Kosmicheskie issledovaniia. 1968. Vyp. 2. S. 186–202.
7. Degtyarev O. V., Denysov V. І., Shchehol’ V. А., Degtyarenko P. H., Nesterov О. V., Mashtak І. V., Sheptun А. D., Avchynnikov І. K., Sirenko V. М., Tatarevsky K. Е. Sposib pidhotovky ta provedennia hrupovogo zapusky suputnykiv u kosmosi odniieiu paketoiu: pat. Ukrainy № 87290. Opubl. 10.02.2014.
8. Eliasberg P. E. Vvedenie v teoriiu poleta iskusstvennykh sputnikov Zemli. М., 1965. 540 s.
9. Eliasberg P. E. i dr. Dvizhenie iskusstvennykh sputnikov v gravitatsionnom pole Zemli. М., 1967. 299 s.
10. Degtyarev A., Vorobiova I., Sheptun A. Organization uniform dispersal for group of small satellites after their separation and acceptable spread at stages of their further approaches. Amer. J. Aerospace Eng. 2015. № 2. P. 36–42. https://doi.org/10.11648/j.ajae.20150205.11
11. Vorobiova I., Sheptun A. Organization uniform dispersal for group of small satellites after their separation and acceptable spread at stages of their further approaches. IAC-15-B4.5.11. Jerusalem, 2015. P. 4–9.
Downloads: 37
Abstract views: 
825
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Columbus; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Seattle; San Mateo; San Mateo; Des Moines; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
India Bengaluru; Mumbai2
Canada Toronto; Monreale2
Cambodia Phnom Penh1
Finland Helsinki1
Unknown1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight

Keywords cloud

]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
Frolov. Hudramovich. Rabotnov Yu. Frolov. (Zenica, Bosnia and Herzegovina, 2012). N., Degtyarev М. Degtyareva. Degtyarev А. Dniepropetrovsk, 2014. Vol. Problemy nelineinogo deformirovaniia. Vol. S., Larionov I. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. R., Selivanov Yu. S., Diskovskii I. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. S., Larionov I. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. Makhutov N. G., Romanov А. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. А., Sadakov О. Т., Sosnovskii L.
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 45
Abstract views: 
2598
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; North Bergen; Boydton; Plano; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
Ukraine Odessa; Dnipro2
Finland Helsinki1
Ethiopia Addis Ababa1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs https://journal.yuzhnoye.com/content_2018_2-en/annot_12_2_2018-en/ Thu, 07 Sep 2023 11:38:27 +0000 https://journal.yuzhnoye.com/?page_id=30770
1 , Baranov E. 1 , Klochkov A. 1 , Morozov A. 1 , Alpatov A. vooruž. Degtyarev A. Dnepropetrovsk, 2014. Shcheverov D. Sinyukov А. Sinyukov. Kopytov. Vinogradov V. A., Dovgodush S. Il’ichyov A. Tarasov E. Alpatov A. Alpatov A. Razumov V. F., Kovalyov B. Abugov D. Shishkov А. V., Baranov E. I., Klochkov A. S., Morozov A. S., Alpatov A. V., Baranov E. I., Klochkov A. S., Morozov A. S., Alpatov A. Missile armaments, vol. V., Baranov E. I., Klochkov A. S., Morozov A. S., Alpatov A. V., Baranov E. I., Klochkov A. S., Morozov A. S., Alpatov A. V., Baranov E. I., Klochkov A. S., Morozov A. S., Alpatov A. V., Baranov E. I., Klochkov A. S., Morozov A. S., Alpatov A.
]]>

12. Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 101-116

DOI: https://doi.org/10.33136/stma2018.02.101

Language: Russian

Annotation: The main scientific and methodological propositions for designing single-stage guided missiles with main solid rocket motors that are intended for delivering payload to the given spatial point with required and specified kinematic motion parameters are defined. The aim of the article is to develop methodology for the early design phase to improve the basic characteristics of guided missiles, including formalization of complex problem to optimize design parameters, trajectory parameters and motion control programs for guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories. The task is defined as a problem of the optimal control theory with limitations in form of equality, inequality and differential constraints. An approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of criterion functional that was used for optimization of design parameters, control programs and basic characteristics of the guided missile. The mathematical model of the guided missile provides adequate accuracy for design study to determine: overall dimensions and mass characteristics of the guided missile in general and its structural components and subsystems; power, thrust and consumption characteristics of the main engine; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by solving design problems. Applications of the developed program were studied to present the research results in a user-friendly form.

Key words: complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the object

Bibliography:
1. Degtyarev A. V. Rocket Engineering: Problems and Prospects. Selected scientific-technical publications. Dnepropetrovsk, 2014. 420 p.
2. Shcheverov D. N. Designing of Unmanned Aerial Vehicles. М., 1978. 264 p.
3. Sinyukov А. М. et al. Ballistic Solid-Propellant Rocket / Under the editorship of A. M. Sinyukov. М., 1972. 511 p.
4. Varfolomeyev V. I. Designing and Testing of Ballistic Rockets / Under the editorship of V. I. Varfolomeyev, M. I. Kopytov. М., 1970. 392 p.
5. Vinogradov V. A., Grushchansky V. A., Dovgodush S. I. et al. Effectiveness of Complex Systems. Dynamic Models. М., 1989. 285 p.
6. Il’ichyov A. V., Volkov V. D., Grushchansky V. A. Effectiveness of Designed Complex Systems’ Elements. М., 1982. 280 p.
7. Krotov V. F., Gurman V. I. Methods and Problems of Optimal Control. М., 1973. 446 p.
8. Pontryagin L. S. et al. Mathematical Theory of Optimal Processes. М., 1969. 385 p.
9. Tarasov E. V. Algorithms of Flying Vehicles Optimal Designing. М., 1970. 364 p.
10. Alpatov A. P., Sen’kin V. S. Complex Task of Optimization of Space Rocket Basic Design Parameters and Motion Control Programs. Technical Mechanics. 2011. No. 4. P. 98-113.
11. Alpatov A. P., Sen’kin V. S. Methodological Support for Selection of Launch Vehicle Configuration, Optimization of Design Parameters and Flight Control Programs. Technical Mechanics. 2013. No. 4. P. 146-161.
12. Sen’kin V. S. Optimization of Super-Light Launch Vehicle Design Parameters. Technical Mechanics. 2009. No. 1. P. 80-88.
13. Sen’kin V. S. Flight Control Optimization and Thrust Optimization of Controllable Rocket Object Main Propulsion System. Technical Mechanics. 2000. No. 1. P. 46-50.
14. Syutkina-Doronina S. V. On Problem of Optimization of Design Parameters and Control programs of a Rocket Object With Solid Rocket Motor. Aerospace Engineering and Technology. 2017. No. 2 (137). P. 44-59.
15. Lebedev А. А., Gerasyuta N. F. Rocket Ballistics. М., 1970. 244 p.
16. Razumov V. F., Kovalyov B. K. Design Basis of Solid-Propellant Ballistic Missiles. М., 1976. 356 p.
17. Yerokhin B. T. SRM Theoretical Design Basis. М., 1982. 206 p.
18. Abugov D. I., Bobylyov V. M. Theory and Calculation of Solid Rocket Motors. М., 1987. 272 p.
19. Shishkov А. А. Gas Dynamics of Powder Rocket Motors. М., 1974. 156 p.
20. Sen’kin V. S. Complex Task of Optimization of Super-Light Solid-Propellant Launch Vehicle Design Parameters and Control Programs. Technical Mechanics. 2012. No. 2. P. 106-121.
21. Methodological Support to Determine in Initial Designing Phase the Design Parameters, Control Programs, Ballistic, Power, and Mass-Dimensional Characteristics of Controllable Rocket Objects Moving In Aeroballistic Trajectory: R&D Report. ITM of NASU and SSAU, Yuzhnoye SDO. Inv. No. 40-09/2017. 2017. 159 p.
Downloads: 42
Abstract views: 
835
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; Des Moines; Boardman; Ashburn; Ashburn24
Unknown; Brisbane;;4
Ukraine Kharkiv; Dnipro; Dnipro; Kyiv4
Singapore Singapore; Singapore; Singapore; Singapore4
Germany Frankfurt am Main; Falkenstein2
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Keywords cloud

]]>
16.1.2018 Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt https://journal.yuzhnoye.com/content_2018_1-en/annot_16_1_2018-en/ Tue, 05 Sep 2023 07:10:09 +0000 https://journal.yuzhnoye.com/?page_id=30477
Degtyarev A. Dnepropetrovsk, 2014. Vol. I., Kryukov A. Vol. Dnipropetrovsk, 2011. Litrov I. Missile armaments, vol. Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt Автори: Usichenko V. Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt Автори: Usichenko V. Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt Автори: Usichenko V. Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt Автори: Usichenko V.
]]>

16. Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 101-117

DOI: https://doi.org/10.33136/stma2018.01.101

Language: Russian

Annotation: The paper presents the a priori probabilities of collision with the Earth for asteroids of Aten and Apollo groups according to Epic and the minimal distances between the orbits of those asteroids and the Earth orbit. The respective regression equations have been derived. For the first thousand of asteroids of the main belt, a number of conclusions are presented concerning genetic relationship between some of them and possibility in principle of close approach (crossing) of their orbits. Some peculiarities are noted of organization and making mass calculations by Halle’s method. The incompleteness of the results obtained is noted.

Key words:

Bibliography:
1. Degtyarev A. V. Rocket Technology. Problems and Prospects: Selected Scientific-Technical Publications. Dnepropetrovsk, 2014. P. 314-322.
2. Catler E. H. On Feasibility of Practical Use of Asteroids that are Near the Earth. Astronomical Bulletin. Vol. 26, No. 4. 1992.
3. Cramer E. N. Comet Radiants and Connection of Meteorite Flows with Comets / News of OGU Astronomical Observatory. К., 1953.
3. Cramer E. N. Comet Radiants and Connection of Meteorite Flows with Comets / News of OGU Astronomical Observatory. К., 1953.
4. Usichenko V. I., Kryukov A. V. On the Problem of Distances between Pairs of Elliptical Orbits / News of Dnipropetrovsk University. Series: Space Rocket Technology. Vol. 22, Issue 17. No. 4. 2014.
5. Shestaka I. S. Origin, Evolution and Genetic Links of Solar System Small Bodies and their Complexes: Dissertation of Doctor of Physics and Mathematics. K., 1993.
6. Usichenko V. I. Selestial-Mechnical Analysis of Unexplained Observations of Years 1768-1865. Dnipropetrovsk, 2011.
7. Litrov I. I. Mysteries of Sky. Saint Petersburg, 1904.
Downloads: 41
Abstract views: 
453
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Ashburn; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Boardman; Ashburn; Seattle; San Mateo; San Mateo; Des Moines; Boardman; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Unknown; Hong Kong2
Ukraine Dnipro; Odessa2
India1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
16.1.2018  Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt
16.1.2018  Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt
16.1.2018  Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt
]]>
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction https://journal.yuzhnoye.com/content_2018_1-en/annot_6_1_2018-en/ Tue, 05 Sep 2023 06:19:12 +0000 https://journal.yuzhnoye.com/?page_id=30454
On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction Authors: Degtyareva O. Content 2018 (1) Downloads: 46 Abstract views: 786 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Matawan; Baltimore;; Plano; Miami; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn 24 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 10 Canada Toronto; Monreale 2 Philippines 1 China Pekin 1 Finland Helsinki 1 Pakistan 1 Great Britain London 1 France 1 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Degtyareva O.
]]>

6. On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 31-38

DOI: https://doi.org/10.33136/stma2018.01.031

Language: Russian

Annotation: The paper deals with the options of solving the task of constructing an inertial navigation system in the conditions of considerable g-load and angular velocity in identified direction by method of setting the sensitive elements at some angle to the identified direction, which allows making measurements in it without loss of measurement quality in the other directions. The paper describes the technique of calculating the angle of sensitive elements setting to the identified direction. The scheme of constructing an inertial navigation system with incomplete set of sensitive elements is considered for the cases when in entire operation leg, rotation around the identified direction is executed. The analysis is given of measurement vector error due to incompleteness of the sensitive elements set.

Key words:

Bibliography:
1. Shunkov V. N. Encyclopedia of Rocket Artillery / Under the general editorship of A. E. Taras. Minsk, 2004. 544 p.
2. Shirokorad A. B. Encyclopedia of National Artillery / Under the general editorship of A. E. Taras. Minsk: Harvest, 2000. 1156 p.
3. Pugachyov V. S. et al. Rocket Control System and Flight Dynamics / V. S. Pugachyov, I. E. Kazakov, D. I. Gladkov, L. G. Yevlanov, A. F. Mishakov, V. D. Sedov. М., 1965. 610 p.
4. Branets V. N., Shmyglevsky I. P. Use of Quaternions in Solid Body Orientation Problems. М., 1973. 320 p.
5. Borisova A. Y., Smal’ A. V. Analysis of Developments of Gimballess Inertial Navigation Systems. Engineering News. N. E. Bauman MGTU. No. 05. 2017.
Downloads: 46
Abstract views: 
786
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore;; Plano; Miami; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Canada Toronto; Monreale2
Philippines1
China Pekin1
Finland Helsinki1
Pakistan1
Great Britain London1
France1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
]]>
20.2.2017 Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments https://journal.yuzhnoye.com/content_2017_2/annot_20_2_2017-en/ Wed, 09 Aug 2023 12:26:27 +0000 https://journal.yuzhnoye.com/?page_id=29866
Degtyarev A. Potapov A. Methodology of Developing Effective Design and Technological Solutions of Space Rocketry Composite Units: Monography in 2 volumes. Vol. Methodology of Developing Effective Design and Technological Solutions of Space Rocketry Composite Units: Monography in 2 volumes. Vol. Smerdov A. Kushnar’ov, Effectiveness of Honeycomb Structures in Aerospace Products: Proceedings of III International Scientific-Practical Conference (Dnepropetrovsk, 27-29 May 2009). Dnepropetrovsk, 2009. Kushnar’ov, A. Potapov, А. Karpov Y. Degtyarev A. Degtyarev, A. Potapov. Kushnar’ov, А. Potapov, А. Potapov, А. 2017 (2) (November): 112—120. Missile armaments, vol.
]]>

20. Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Kharkiv Aviation Institute, Kharkiv, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 112-120

Language: Russian

Annotation: Some main results of scientific support of development of launch vehicle head module composite loadbearing bays are presented. The methodology is proposed for developing these units. By the example of payload fairing and interstage bay of Cyclone-4 launch vehicle, high efficiency is shown of proposed methodology implementation when selecting their rational design and technological parameters.

Key words:

Bibliography:
1. Degtyarev A. V. Rocket Technology. Problems and Prospects. Selected scientific-technical publications. Dnepropetrovsk, 2014. 420 p.
2. Kovalenko V. A., Kondrat’yev A. V. Use of Polymer Composite Materials in Space Rockets as Reserve of Increasing their Mass and Functional Effectiveness. Aerospace Engineering and Technology. 2011. No. 5 (82). P. 14-20.
3. Kondrat’yev A. V. et al. Analysis of Nomenclature of Type Composite Units of Space Rockets and Structural Schemes Applied for them / A. V. Kondrat’yev, A. G. Dmitrenko, K. D. Stenile, А. А. Tsaritsynsky. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works of N. E. Zhukovsky Aerospace University “KhAI”. Issue 3 (79). Kharkiv, 2014. P. 19 – 30.
4. Potapov A. M. et al. Comparison of Payload Fairings of Existing and Prospective Domestic Launch Vehicles and their Foreign Analogs / А. М. Potapov, V. A. Kovalenko, A. V. Kondrat’yev. Aerospace Engineering and Technology. 2015. No. 1(118). P. 35 – 43.
5. Gaidachuk A. V. et al. Methodology of Developing Effective Design and Technological Solutions of Space Rocketry Composite Units: Monography in 2 volumes. Vol. 2. Synthesis of Space Rocketry Composite Units Parameters at Heterogeneous Loading / A. V. Gaidachuk, V. E. Gaidachuk, A. V. Kondrat’yev, V. A. Kovalenko, V. V. Kirichenko, А. M. Potapov / Under the editorship of A. V. Gaidachuk. Kharkiv, 2016. 250 p.
6. Gaidachuk A. V. et al. Methodology of Developing Effective Design and Technological Solutions of Space Rocketry Composite Units: Monography in 2 volumes. Vol. 1. Creation of Space Rocketry Units with Specified Quality of Polymer Composite Materials / A. V. Gaidachuk, V. E. Gaidachuk, A. V. Kondrat’yev, V. A. Kovalenko, V. V. Kirichenko, А. M. Potapov / Under the editorship of A. V. Gaidachuk. Kharkiv, 2016. 263 p.
7. Smerdov A. A. Development of Methods to Design Space Rocketry Composite Materials and Structures: Dissertation of Doctor of Engineering Science: 05.07.02, 05.02.01. М., 2007. 410 p.
8. Slyvyns’kyy V. et al. Basic parameters’ optimization concept for composite nose fairings of launchers / V. Slyvyns’kyy, V. Gajdachuk, V. Kirichenko, A. Kondratiev. 62nd International Astronautical Congress, IAC 2011 (Cape Town, 3-7 October 2011). Red Hook, NY: Curran, 2012. Vol. 9. P. 5701-5710.
9. Gaidachuk V. E. et al. Optimization of Cyclone-4 Launch Vehicle Payload Fairing Design Parameters / V. E. Gaidachuk, V. I. Slivinsky, A. V. Kondrat’yev, A. P. Kushnar’ov, Effectiveness of Honeycomb Structures in Aerospace Products: Proceedings of III International Scientific-Practical Conference (Dnepropetrovsk, 27-29 May 2009). Dnepropetrovsk, 2009. P. 88 – 95.
10. Zinov’yev A. M. et al. Design and Technological Solution and Carrying Capacity of Cyclone-4 Launch Vehicle Interstage Bay Made of Polymer Composite Materials / А. М. Zinov’yev, А. P. Kushnar’ov, A. V. Kondrat’yev, А. М. Potapov, А. P. Kuznetsov, V. A. Kovalenko. Aerospace Engineering and Technology. 2013. No. 3 (100). P. 46-53.
11. Karpov Y. S. Connection of Parts and Units Made of Composite Materials: Monography. Kharkiv, 2006. 359 p.
12. Kondrat’yev A. V. Mass Optimization of Launch Vehicle Payload Fairing Irregular Zones. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works of N. E. Zhukovsky Aerospace University “KhAI”. Issue 47 (4). Kharkiv, 2006. P. 126 – 133.
13. Degtyarev A. V. et al. Evaluation of Carrying Capacity of Launch Vehicle Bays Separation System Composite Fitting / A. V. Degtyarev, A. P. Kushnar’ov, V. V. Gavrilko, V. A. Kovalenko, А. V. Kondrat’yev, А. М. Potapov. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2013. Issue 1. P. 18-21.
14. Patent 81537 UA, MPK (2013.01) F42B 15/36 (2006.01) B64D 1/00 Fitting of Rocket’s Three-Layer Shell / О. М. Zinov’yev, О. P. Kuznetsov, V. V. Gavrilko, О. М. Potapov, V. O. Kovalenko et al.; Applicant and patent holder NVF Dniprotechservice, Yuzhnoye SDO. No. u 2012 11210; Claimed 27.09.2012; Published 10.07.13, Bulletin 13. 4 p.
15. Zinov’yev A. M. et al. Manufacturing Technology of Cyclone-4 Launch Vehicle Experimental Large-Sized Interstage Bay Made of Carbon Plastics / А. M. Zinov’yev, А. P. Kushnar’ov, А. V. Kondrat’yev, А. М. Potapov, А. P. Kuznetsov, V. A. Kovalenko. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works of N. E. Zhukovsky Aerospace University “KhAI”. Issue 2 (74). Kharkiv, 2013. P. 7 – 17.
16. Zinov’yev A. M. et al. Static Tests of Cyclone-4 Launch Vehicle Experimental Interstage Bay Made of Carbon Plastic / А. М. Zinov’yev, А. P. Kushnar’ov, А. V. Kondrat’yev, А. М. Potapov, А. P. Kuznetsov, V. A. Kovalenko. Aerospace Engineering and Technology. 2013. No. 4(101). P. 28-35.
Downloads: 46
Abstract views: 
1251
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Ashburn; Portland; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore13
Canada Toronto; Monreale2
China Shanghai1
Finland Helsinki1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
20.2.2017 Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments
20.2.2017 Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments
20.2.2017 Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments
]]>
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime https://journal.yuzhnoye.com/content_2019_1-en/annot_5_1_2019-en/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27710
Degtyarev, O.
]]>

5. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Language: Russian

Annotation: This article contains results of methodology and standards development for life prediction of launch site structures to launch various types’ launch vehicles into near-earth orbit. Launch sites have been built in various countries of the world (European Union, India, China, Korea, Russia, USA, Ukraine, France, Japan, etc.). In different countries they have their own characteristics, depending on the type and performance of the launch vehicles, infrastructure features (geography of the site, nomenclature of the space objects, development level of rocket and space technology), problems that are solved during launches, etc. Solution of various issues, arising in the process of development of the standards for justification of launch site life is associated with the requirement to consider complex problems of strength and life of nonuniform structural elements of launch sites and structures of rocket and space technology. Launch sites are the combination of technologically and functionally interconnected mobile and fixed hardware, controls and facilities, designed to support and carry out all types of operations with integrated launch vehicles. Launch pad, consisting of the support frame, flue duct lining and embedded elements for frame mounting, is one of the principal components of the launcher and to a large extent defines the life of the launch site. Main achievements of Ukrainian scientists in the field of strength and life are specified, taking into account the specifics of various branches of technology. It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Main methodological steps of launch site structures life prediction are defined. Service limit of launch site is suggested to be the critical time or the number of cycles (launches) over this period, after which the specified limiting states are achieved in the dangerous areas of the load-bearing elements: critical cracks, destruction, formation of unacceptable plastic deformations, buckling failure, corrosion propagation, etc. Classification of loads acting on the launch sites is given. The useful life of launch site is associated with estimation of the number of launches. Concept of low and multiple-cycle fatigue is used. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.

Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur

Bibliography:

1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.

Downloads: 48
Abstract views: 
816
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Springfield; Matawan; North Bergen; Plano; Miami; Miami; Miami; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Canada Toronto; Toronto; Monreale3
Unknown Hong Kong;2
Finland Helsinki1
India1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Keywords cloud

]]>