Search Results for “Degtyareva O. Y.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 06 Nov 2024 11:42:12 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Degtyareva O. Y.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep Authors: Hudramovych V. Hudramovych V. Hudramovych V. L., Hudramovych V. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Degtyareva. Hudramovych V. Amsterdam, Lousanne, New York, Tokyo, 1999. Fatigue and durability of structural materials. Space technology. Space technology. Hudramovych V. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep Автори: Hudramovych V. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep Автори: Hudramovych V.
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 45
Abstract views: 
2600
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; North Bergen; Boydton; Plano; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
Ukraine Odessa; Dnipro2
Finland Helsinki1
Ethiopia Addis Ababa1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction https://journal.yuzhnoye.com/content_2018_1-en/annot_6_1_2018-en/ Tue, 05 Sep 2023 06:19:12 +0000 https://journal.yuzhnoye.com/?page_id=30454
On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction Authors: Degtyareva O. Content 2018 (1) Downloads: 46 Abstract views: 786 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Matawan; Baltimore;; Plano; Miami; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn 24 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 10 Canada Toronto; Monreale 2 Philippines 1 China Pekin 1 Finland Helsinki 1 Pakistan 1 Great Britain London 1 France 1 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Degtyareva O.
]]>

6. On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 31-38

DOI: https://doi.org/10.33136/stma2018.01.031

Language: Russian

Annotation: The paper deals with the options of solving the task of constructing an inertial navigation system in the conditions of considerable g-load and angular velocity in identified direction by method of setting the sensitive elements at some angle to the identified direction, which allows making measurements in it without loss of measurement quality in the other directions. The paper describes the technique of calculating the angle of sensitive elements setting to the identified direction. The scheme of constructing an inertial navigation system with incomplete set of sensitive elements is considered for the cases when in entire operation leg, rotation around the identified direction is executed. The analysis is given of measurement vector error due to incompleteness of the sensitive elements set.

Key words:

Bibliography:
1. Shunkov V. N. Encyclopedia of Rocket Artillery / Under the general editorship of A. E. Taras. Minsk, 2004. 544 p.
2. Shirokorad A. B. Encyclopedia of National Artillery / Under the general editorship of A. E. Taras. Minsk: Harvest, 2000. 1156 p.
3. Pugachyov V. S. et al. Rocket Control System and Flight Dynamics / V. S. Pugachyov, I. E. Kazakov, D. I. Gladkov, L. G. Yevlanov, A. F. Mishakov, V. D. Sedov. М., 1965. 610 p.
4. Branets V. N., Shmyglevsky I. P. Use of Quaternions in Solid Body Orientation Problems. М., 1973. 320 p.
5. Borisova A. Y., Smal’ A. V. Analysis of Developments of Gimballess Inertial Navigation Systems. Engineering News. N. E. Bauman MGTU. No. 05. 2017.
Downloads: 46
Abstract views: 
786
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore;; Plano; Miami; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Canada Toronto; Monreale2
Philippines1
China Pekin1
Finland Helsinki1
Pakistan1
Great Britain London1
France1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
]]>
17.1.2017 Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC https://journal.yuzhnoye.com/content_2017_1/annot_17_1_2017-en/ Wed, 28 Jun 2023 12:10:36 +0000 https://journal.yuzhnoye.com/?page_id=29518
, Degtyareva O. S., Degtyareva O. S., Degtyareva O. S., Degtyareva O. S., Degtyareva O. S., Degtyareva O. S., Degtyareva O.
]]>

17. Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 107-110

Language: Russian

Annotation: The article presents briefly the peculiarities of designing and ground development testing of dispensers turn drive system, the system composition and functioning principle are described.

Key words:

Bibliography:
1. Mikhailov V. S. Space Dnepr. Notes on Conversion Space Rocket Program. Pushkino, 2015. 156 p.
3. Gontarovsky V. A., Makarenko A. A., Shevtsov E. I. Role and Place of Functional Tests in Development of Strategic Missile Systems. Space Technology. Missile Armaments: Collection of Scientific-technical articles. 2014. Issue 1. 164 p.
Downloads: 36
Abstract views: 
850
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Dublin; Detroit; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman; Ashburn; Boardman22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Dnipro2
Unknown1
Canada Toronto1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
17.1.2017 Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC
17.1.2017 Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC
17.1.2017 Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC
]]>
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse https://journal.yuzhnoye.com/content_2019_2-en/annot_4_2_2019-en/ Mon, 15 May 2023 15:45:37 +0000 https://journal.yuzhnoye.com/?page_id=27206
Numerical simulation of behavior of elastic structures with local stiffening elements Authors: Hudramovych V. Perspektivy sotrudnichestva NAN Ukrainy, NAN Belarusi i Yuzhnoye SDO dlya resheniya problemnykh voprosov kosmicheskoy otrasli. Degtyareva. N., Lobodyuk V. Amsterdam/ New York / Tokyo, 1999. Space technology. Space technology. Hudramovych V. Space technology. Numerical simulation of behavior of elastic structures with local stiffening elements Автори: Hudramovych V. Space technology. Numerical simulation of behavior of elastic structures with local stiffening elements Автори: Hudramovych V. Space technology. Numerical simulation of behavior of elastic structures with local stiffening elements Автори: Hudramovych V.
]]>

4. Numerical simulation of behavior of elastic structures with local stiffening elements

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (2); 25-34

DOI: https://doi.org/10.33136/stma2019.02.025

Language: Russian

Annotation: Availability of different inclusions, stiffenings, discontinuities (holes, voids and flaws) are the factors that cause structural irregularity and are typical for structural elements and buildings from various current technology areas, in particular aerospace technology. They significantly influence the deformation processes and result in stress concentration, which can cause local damages or malconformations and as a result lead to impossibility to further use the structure. Materials used are also heterogeneous in its structure. Inclusions can simulate thin stiffening elements, straps, welded or glue joints. It is necessary to detect the thin inclusions when phase transformations of materials are studied, for example, when martensite structures are formed. Study of the various bodies with inclusions is very important in the powder technology, ceramics, etc., where powder, previously compressed under high pressure, is sintered at high temperatures. Use of surface hardening that increases working efficiency of the structural elements is prospective in many engineering sectors. It is important to develop discrete hardening, implemented through manufacturing schemes of particular type. When discrete hardenings impact on the structural elements mode of deformation is simulated, they can also be considered as inclusions of specific structure. Inclusions can also simulate banding of the ferritic-pearlitic structure in the microstructure, related to the complex preloading under material plastic forming. It is advisable to use numerical methods for studies that are universal and suitable for objects of various shapes, sizes and types of loading. Main numerical methods are finite difference method, boundary element method, variation grid-based method, finite element method, method of local variations. This article features ANSYS – based computer simulation of the aerospace structural element behavior – a rectangular plate with two extended elastic inclusions of different rigidity, simulating elastic heterogeneities of structures and materials.

Key words: finite-element method, strength, inclusions, computer simulation

Bibliography:

1. Brebbia K., Telles J., Wroubell L. Metody granichnykh elementov / per. s angl. M., 1987. 524 s.
2. Vasidzu K. Variatsionnye metody v teorii uprugosti i plastichnosti / per. s angl. M., 1987. 544 s.
3. Vilchevskaya Ye. N., Korolev I. K., Freidin A. B. O fazovykh prevrasheniyakh v oblasti neodnorodnosti materiala. Ch. 2: Vzaimideistvie treschiny s vklyucheniem, preterpevayushim fazovoe prevraschenie. Izv. RAN. Mekhanika tverdogo tela. 2011. № 5. S. 32–42.
4. Hart E. L. Konechnoelementniy analiz ploskodeformiruemukh sred s vklyucheniyami. Visn. Dnipropetr. un-tu. Ser.: Mekhanika. 2011. Vyp. 15, t. 2. S. 39–47.
5. Hart E. L., Hudramovich V. S. Chislennoye modelirovanie povedeniya ploskodeformiruemykh strukturirivannykh sred na osnove proektsionno-iteratsionnykh ckhem MKE. Matemat. modelirovanie v mekh. deform. tel i konstruktsiy: materialy 24-oy Mezhdunarod. conf. (SPb., Rossiya, 2011). SPb., 2011. T. 11. S. 37–39.
6. Hart E. L., Hudramovich V. S. Chislennoe modelirovanie structurirovannykh sred. Dopovidi NAN Ukrainy. 2012. № 5. S. 49–56.
7. Hart E. L., Hudramovich V. S. Proektsionno-iteratsionnaya modifikatsia metoda lokalnykh variatsiy dlya zadach s kvadratychnym funktsionalom. Prikl. Matematika I mekhanika. 2016. T. 80, № 2. S. 218–230. https://doi.org/10.1016/j.jappmathmech.2016.06.005
8. Hudramovich V. S. Osobennosti neuprugogo povedeniya neodnorodnykh obolochechnykh elementov konstruktsiy. Aktualnye problem mekhaniki: monografia/ za red. M. V. Polyakova. Dnipro, 2018. S. 195–207.
9. Hudramovich V. S., Hart E. L. Konechnoelementniy analiz processa rasseyanogo razrusheniya ploskodeformiruemykh uprugoplastichnykh sred s lokalnymi contsetratami napryazheniy. Uprugost’ I neuprugost’: Materialy Mezhdunarod. nauchn. symp. po problemam mekhaniki deformiruemykh tel, posvyaschennogo 105-letiyu so dnya rozhdeniya A. A. Ilyushina (Moskow, 2016 ). M., 2016. S. 158–161.
10. Hudramovich V. S., Hart E. L., Strunin K. A. Modelirovanie processa deformirovaniya plastiny s uprugimi protyazhonnymi vklyucheniyami na osnove metoda konechnykh elementov. Tekhn. mechanika. 2014. № 2. S. 12–24.
11. Hudramovich V. S., Demenkov A. F., Konyukhov S. N. Nesuschaya sposobnost’ neidealnykh tsilindricheskykh obolochek s uchetom plasticheskykh deformatsiy. Prochnost’ I nadezhnost’ elementov konstruktsiy: sb. nauchn. tr. K., 1982. S. 45–48.
12. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliyanie vyrezov na prochnost’ tsilindrycheskykh otsekov raket-nositeley pri neuprugom deformirovanii materiala. Kosmichna nauka I technologia. 2017. T. 23, № 6. S. 12–20.
13. Hudramovich V. S., Levin V. M., Hart E. L. i dr. Modelirovanie processa deformirovaniya plastinchatykh elementov zherezobetonnykh konstruktsiy teploenergetiki s ispolzovaniem MKE. Techn. mechanika. 2015. № 2. S. 59–70.
14. Hudramovich V. S., Reprintsev A. V., Ryabokon’ S. A., Samarskaya E. V. Otsenka resursa konstruktsiy raketno-kosmicheskoy techniki pri uchete vliyaniya kontsetratov napryazheniy v vide otverstiy. Technicheskaya diagnostika i nerazrushaushiy control. 2016. № 2. S. 28–36.
15. Gultyaev V. I., Zubchaninov V. G., Zubchaninov D. V. Strukturnye izmeneniya stali 45 v processe eyo deformirovaniya. Izv. Tulskogo gos. un-ta. 2005. Vyp. 8. S. 26-29.
16. Zenkevich O., Morgan K. Konechnye elementy i aproximatsia / per. s angl. M., 1986. 318 s.
17. Kashanov A. E. Perspektivy sotrudnichestva NAN Ukrainy, NAN Belarusi i Yuzhnoye SDO dlya resheniya problemnykh voprosov kosmicheskoy otrasli. Raketnaya technika. Novye vozmozhnosti: nauchn.-techn. sborn. / pod red. A. V. Degtyareva. Dnepr, 2019. S. 281–294.
18. Koval’ Y. N., Lobodyuk V. A. Deformatsionnye i relaksatsionnye yavlenia pri prevraschenniyakh martensitnogo typa. K., 2010. 288 s.
19. Lyashenko B. A., Kuzema Y. A., Digahm M. S. Uprochnenie poverkhnosti metallov pokrytiyami diskretnoy struktury s povyshennoy adhezionnoy i cohezionnoy stoykostyu. К., 1984. 57 s.
20. Stern M. B., Rud’ V. D. Mekhanichni ta kompyuterni modeli konsolidatsii granulyuovanykh seredovysh na osnovi poroshkiv metaliv i keramiki pri deformuvanni ta spikanni / za red. V. V. Skorokhoda. Lutsk, RVV LNTU, 2010. 232 s.
21. ANSYS release 18.1 Documentation for ANSYS WORKBENCH: ANSYS Inc.
22. Hart E., Hudramovich V. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance–2012: Proc. of Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). P. 157–164.
23. Hart E., Hudramovich V. Projection-iterative schemes for the realization of the finite-element method in problems of deformation of plates with holes and inclusions. J. Math. Sci. 2014. Vol. 203. № 1. P. 55–69. https://doi.org/10.1007/s10958-014-2090-x
24. Hudramovich V. S. Features of nonlinear deformation and critical states shell structures with geometrical imperfections. Int. Appl. Mech. 2006.Vol. 42, № 12. P. 1323–1355. https://doi.org/10.1007/s10778-006-0204-y
25. Hudramovich V. S., Hart E. L., Ryabokon’ S. A. Elastoplastic deformation of nonhomogeneous plates. J. Eng. Math. 2013. Vol. 78, № 1. P. 181–197. https://doi.org/10.1007/s10665-010-9409-5
26. Hudramovich V. S., Hart E. L., Strunin K. A. Modeling of the behavior plane-deformable elastic media with elongated elliptic and rectangular inclusions. Materials Science. 2017. Vol. 52, № 6. P. 768–774. https://doi.org/10.1007/s11003-017-0020-z
27. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: Procedings Int. Conf. (Helsinki, Finland, 1999). Amsterdam/ New York / Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
28. Olevsky E. A., Maximenko A. and Van Der Biest O. On-line sintering strength of ceramic composites. Int. J. Mech. Sci. 2002. Vol. 44. P. 755–771. https://doi.org/10.1016/S0020-7403(02)00005-X

Downloads: 45
Abstract views: 
589
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; North Bergen; Plano; Columbus; Columbus; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
China Shanghai1
Finland Helsinki1
Unknown1
Pakistan Multan1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Czech Prague1
Ukraine Dnipro1
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software https://journal.yuzhnoye.com/content_2023_1-en/annot_9_1_2023-en/ Fri, 12 May 2023 16:11:14 +0000 https://test8.yuzhnoye.com/?page_id=26993
Mathematical support and software Authors: Yenotov V. The main types of mathematical models, their areas of application have been considered as a part of the analysis. Ballisticheskoe proektirovanie raket: ucheb.-metod, posobie dlya vuzov. Nikolaev Yu. M., Solomonov Yu. S., Pustovgarova Ye. I., Pustovgarova Ye. I., Pustovgarova Ye. Degtyareva. GP «KB «Yuzhnoye». GP «KB «Yuzhnoye». Space technology. Space technology. Yenotov V. Space technology. Mathematical support and software Автори: Yenotov V. Space technology. Mathematical support and software Автори: Yenotov V. Space technology. Mathematical support and software Автори: Yenotov V. Space technology. Mathematical support and software Автори: Yenotov V. Space technology.
]]>

9. Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 77-87

DOI: https://doi.org/10.33136/stma2023.01.077

Language: Ukrainian

Annotation: Substantiation of the research tools has been performed as a part of methodology development for the air and missile defense system. The problem under consideration is very complex due to the multifactorial nature of the research object, its qualitative variety and manifold structure, incomplete definition of the problem statement. Furthermore, the ability of modern technologies to produce different arms systems, which are capable of carrying out same class tasks, considerably increases the risk of making not the best decisions. Based on this, as well as taking into account the sharp increase in the cost of weaponry, the considered problem is classified as an optimization one that should be solved through the theory of operations research. In this theory, such task is viewed as a mathematical problem, and mathematical simulation is the basic method of research. The main types of mathematical models, their areas of application have been considered as a part of the analysis. The classification of mathematical models has been indicated according to the scale of reproduced operations, purpose, and goal orientation. Quantitative and qualitative correlation of forces has been accepted as the efficiency criterion, which determines a goal orientation of the model. The problems related to this have been shown. In particular, searching for the compromise between simplicity of the mathematical model and its adequacy to the research object is among these problems. Two of the basic approaches to principles of the military operation model construction and its assessment have been considered. The first is implemented through modeling of the combat operations. The second approach is based on the assumption that different armament types can be compared based on their contribution to the outcome of the operation, and on the possibility to assign «a weighting coefficient» named as a combat potential to each of these types. The modern level of problem solving related to this method has been shown. The reasonability of its application in the considered task, including the definition of forces correlation of the opposing parties, has been substantiated. The basic regulations of the construction concept of the required mathematical model and tools for its research have been formulated based on the analysis results: the assigned problem should be solved by analytical methods through the theory of operations research; the analytical model is the most acceptable conception of the analyzed level of the military operation; the synthesis of the model should be based on the idea of a combat potential. At the same time, it should be taken into account that the known approach to the definition of forces correlation, which uses the combat potential method, has a number of essential limitations, including the methodological ones. Therefore, within the bounds of further research, this approach requires the development both in terms of improving the reliability of the single assessment and in terms of giving the system qualities to the synthesized mathematical model.

Key words: multifunctional system, mathematical model, military unit, combat potential, correlation of forces, defensive sufficiency

Bibliography:

1. Pavlyuk Yu. S. Ballisticheskoe proektirovanie raket: ucheb.-metod, posobie dlya vuzov. UDK623.451.8. Izd-vo ChGTU, Chelyabinsk, 1996. 92 s.
2. Nikolaev Yu. M., Solomonov Yu. S. Inzhenernoe proektirovanie upravlyaemykh ballisticheskikh raket s RDTT. M., 1979. 240 s.
3. Enotov V. G., Kirichenko A. S., Pustovgarova Ye. V. Osobennosti rascheta i vybora raskhodnoy diagrammy dvukhrezhimnykh marshevykh RDTT: ucheb.-metod. posobie. Pod red. akadem. A. V. Degtyreva. Dnepr, 2019. 68 s.
4. Enotov V. G., Kushnir B. I., Pustovgarova Ye. V. Metodika-programma proektnoy otsenki characteristic marshevykh dvigateley na tverdom toplive s korpusami iz vysokoprochnykh metallicheskikh materialov, statsionarnymi soplami i postanovka ee na avtomatizirovanniy raschet: ucheb.-metod. posobie. Vtoroe izd., pererabot. i dop. Pod red. A. S. Kirichenko. Dnep, 2019. 91 s.
5. Enotov V. G., Kirichenko A. S., Kushnir B. I., Pustovgarova Ye. V. Metodika proektnoy otsenki characteristic marshevykh dvigatelnykh ustanovok na tverdom toplive s povorotnymi upravlyayuschimi soplami, plastikovymi tselnomotannymi korpusamy i postanovka ee na avtomatizirovanniy raschet: ucheb.-metod. posobie. Vtoroe izd., pererabot. i dop. Pod red. akadem. A. V. Degtyareva. Dnepr. 2019. 149 s.
6. Alemasov V. Ye., Dregalin A. F., Tishin A. P. Teoriya raketnykh dvigateley. M., 1980. 55 s.
7. Raschetnye materialy dlya podgotovki i vydachi iskhodnykh dannykh na razrabotku uzlov marshevykh dvigatelnykh ustanovok na tverdom toplive. Raschet ID metodom avtomatizirovannogo proektirovaniya operativno-takticheskikh raket: inzhenern. zapiska 553-376 IZ. GP «KB «Yuzhnoye». Dnepropetrovsk, 2017. 30 s.
8. Metodika avtomatizirovannogo proektirovaniya operativno-takticheskikh raket: nauch.-tekhn. Otchet 03-453/32 NTO. GP «KB «Yuzhnoye». Dnepropetrovsk, 2010. 127 s.

Downloads: 9
Abstract views: 
1354
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Columbus; San Mateo3
China Pekin1
Unknown1
Canada Toronto1
Singapore Singapore1
Germany Falkenstein1
Ukraine Kremenchuk1
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software

Keywords cloud

]]>