Search Results for “Deshevykh S. O.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 10:52:46 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Deshevykh S. O.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps https://journal.yuzhnoye.com/content_2018_2-en/annot_9_2_2018-en/ Thu, 07 Sep 2023 11:25:59 +0000 https://journal.yuzhnoye.com/?page_id=30763
, Deshevykh S. Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. Kruse, Thomas J. Schmidt, Thomas O. B., Borovsky B. Theory and Calculation of Liquid Rocket Engines Generator Sets. Borovsky B. Y., Deshevykh S. (2018) "The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps" Космическая техника. "The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps" Космическая техника. Missile armaments , no. Y., Deshevykh S. quot;The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps", Космическая техника. Missile armaments, vol. Y., Deshevykh S. Y., Deshevykh S. Y., Deshevykh S. Y., Deshevykh S.
]]>

9. The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 76-82

DOI: https://doi.org/10.33136/stma2018.02.076

Language: Russian

Annotation: In the present-day rocket engineering, the liquid rocket engines with pump feed system have gained wide acceptance. As a rule, the pumps used in liquid rocket engines are screw-axifugal. The screw serves to increase pressure upstream of the axifugal wheel, thus ensuring its cavitation-free operation. The screws used in the screw-axifugal pumps of liquid rocket engines may be of two types: with constant and variable step. The screws with constant step are easier to calculate, profile and manufacture as compared to the screws with variable step. As known from the literature, the use of the screw with variable step increases power characteristics of the screw-axifugal pump. The purpose of investigation is comparative analysis of cavitation and power characteristics of the following high-speed low-consumption screw-axifugal pumps of liquid rocket engines with jointed screws, screws of constant and variable step:  RD868 engine oxidizer and fuel pumps;  RD859 engine fuel pumps;  RD861K engine fuel pumps. Besides, the analysis has been made of the impact of design features and geometrical dimensions of the screws with variable and constant step on power characteristics of the screw-axifugal high-speed lowconsumption pumps of liquid rocket engines. Special attention has been given to the analysis of anticavitation properties of the pumps with screws of variable step and pumps with jointed screws. Based on the results of investigation, it has been ascertained that when using the joint screws and screws with variable step instead of the screws with constant step in the high-speed low-consumption screw-axifugal pumps of liquid rocket engines, the pump delivery head increases from 0.65 to 3.83%, the efficiency increases up to 1.7%. The use of jointed screw and screw of variable step as compared with the screw of constant step does not have any impact on cavitation properties of low-consumption crew-axifugal pumps of liquid rocket engines.

Key words: pressure characteristic, cavitation characteristic, inducers of the variable-pitch, continuous-pitch inducers, pump efficiency

Bibliography:
1. Pre-burner operating method for rocket turbopump: Patent 6505463 USA: MPK F02K9/48 / William D. Kruse, Thomas J. Mueller, John J. Weede (USA); Northrop Grumman Corporation. No. 20020148215; claimed 17.01.2001; published 14.01.2003, Bulletin No. 09/761,957. 5 p.
2. Hybrid rocket motor using a turbopump to pressurize a liquid propellant constituent: Patent 6640536 USA: MPK F02K9/50, F02K9/48, F02K9/46, F02K9/72, F02K9/56 / Korey R. Kline, Kevin W. Smith, Eric E. Schmidt, Thomas O. Bales; Hy Pat Corporation (Miami, FL). No. 20030136111; claimed 22.01.2002; published 04.11.2003, Bulletin No. 10/054,646. – 11 p.
3. Chebayevsky V. F., Petrov V. I. Cavitation Characteristics of High-Speed Auger-Centrifugal Pumps. М., 1973. 152 p.
4. Petrov V. I., Chebayevsky V. F. Cavitation on High-Speed Impeller Pumps. М., 1982. 192 p.
5. Ovsyanikov V. B., Borovsky B. I. Theory and Calculation of Liquid Rocket Engines Generator Sets. М, 1986. 376 p.
6. Borovsky B. I. Power Parameters and Characteristics of High-Speed Impeller Pumps. М., 1989. 181 p.
Downloads: 43
Abstract views: 
1499
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Ashburn; Matawan; Baltimore; North Bergen; Plano; Dublin; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore4
Germany; Falkenstein2
Canada Toronto; Monreale2
Ukraine Kryvyi Rih; Dnipro2
Cambodia Phnom Penh1
Finland Helsinki1
Unknown1
Indonesia1
Romania Voluntari1
Netherlands Amsterdam1
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps

Keywords cloud

]]>
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4 https://journal.yuzhnoye.com/content_2018_2-en/annot_4_2_2018-en/ Thu, 07 Sep 2023 10:54:18 +0000 https://journal.yuzhnoye.com/?page_id=30735
, Deshevykh S. Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. 2018 (2); 25-33 DOI: https://doi.org/10.33136/stma2018.02.025 Language: Russian Annotation: The article presents the experience of creating LRE turbopump units by the Rocket Engines Design Office (DO-4) at Yuzhnoye SDO. Both earlier developments of DO and the turbopump unit being now in final testing phase are considered. The design evolution of both separate assemblies and of entire unit is shown. The information is presented on the problems that the designers faced in testing the turbopumop unit and the ways to solve them. F., Deshevykh S. P., Deshevykh S. P., Deshevykh S. P., Deshevykh S. P., Deshevykh S. P., Deshevykh S. P., Deshevykh S.
]]>

4. Turbopump Units of Rocket Engines Developed by DO-4

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 25-33

DOI: https://doi.org/10.33136/stma2018.02.025

Language: Russian

Annotation: The article presents the experience of creating LRE turbopump units by the Rocket Engines Design Office (DO-4) at Yuzhnoye SDO. The best known turbopump units designs developed by DO are described. Both earlier developments of DO and the turbopump unit being now in final testing phase are considered. The design evolution of both separate assemblies and of entire unit is shown. The design evolution allowed increasing the unit’s lifetime dozens times. For example, the lifetime of the first turbopump units developed by DO did not exceed 150 s. Currently, the DO has in stock the engines with lifetime of ~19000 s. The information is presented on the problems that the designers faced in testing the turbopumop unit and the ways to solve them. The unique achievement are presented. At present, there are no analogs of some units in the world. The article presents the information on the latest achievements of DO, such as the face seal on pump vane discs whose use fully excludes unwanted leaks. Having analyzed the data presented, one may conclude that the Rocket Engines Design Office and Yuzhnoye SDO as a whole accumulated sufficient experience and knowledge allowing solving any problems that may arise when developing a new LRE turbopump unit, and successfully operating LRE with turbopump units, including those in the engines with generator gas afterburning created in recent years testify to a great value of accumulated experience.

Key words: liquid rocket engine, turbopump unit, pump, turbine

Bibliography:
1. Centrifugal Pump: Patent 1021816 А, USSR: MPK 7F04D1/00, 7F04D29/04 / Ivanov Y. N., Steblovtsev A. A.; Applicant and patent holder Yuzhnoye State Design Office. No. 3313928/25-06; claimed 06.07.1983, published 07.06.1984.
2. Auger-Centrifugal Pump: Patent 73783, Ukraine: MPK 7F04D29/66 / Ivanov Y. N., Pilipenko V. V., Zadontsev V. A., Drozd V. A.; Applicant and patent holder Yuzhnoye State Design Office. No. 2003021144; claimed 07.02.2003, published 15.09.2005.
3. End Seal. Patent 61082, Ukraine: MPK 7F16J15/34 / Ivanov Y. N., Chetverikova I. M.; Applicant and patent holder Yuzhnoye State Design Office. No. 990311536; claimed 19.03.1999, published 17.11.2003.
4. End Seal of High-Speed Shaft: Patent 48248, Ukraine: MPK F16J15/54, F04D29/10 / Ivanov Y. N., Steblovtsev A. A., Gameberger Y. A., Peredarenko V. M.; Applicant and patent holder Yuzhnoye State Design Office. No. 99031442; claimed 16.03.1999, published 15.08.2002.
5. Centrifugal Pump. Patent 84023, Ukraine: MPK F04D1/00 / Ivanov Y. N., Ivchenko L. F., Deshevykh S. A., Dan’kevich D. S.; Applicant and patent holder Yuzhnoye State Design Office. No. а200601399; claimed 13.02.2006, published 10.09.2008.
Downloads: 48
Abstract views: 
553
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; San Antonio; Matawan; Baltimore; Plano; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn29
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Unknown; Hong Kong;3
Canada Toronto; Monreale2
Germany; Falkenstein2
Finland Helsinki1
The Republic of Korea Daejeon1
Malaysia1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>