Search Results for “Frolov V. P.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Thu, 25 Apr 2024 10:51:12 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Frolov V. P.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. Parton V. tr., posv. Frolov. Frolov. tel, posv. Dniepropetrovsk, 2014. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh.
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 21
Abstract views: 
1132
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Dublin; Monroe; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Boardman; Ashburn14
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Odessa; Dnipro2
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems https://journal.yuzhnoye.com/content_2018_1-en/annot_11_1_2018-en/ Tue, 05 Sep 2023 06:50:56 +0000 https://journal.yuzhnoye.com/?page_id=30466
1 , Frolov V. 2 Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 1 ; Kharkiv Aviation Institute, Kharkiv, Ukraine 2 . Development of Technique of Alkaline Nickel-Cadmium Accumulators Recovery to Prolong their Service Life. Recovery of Open-Type Nickel-Cadmium Accumulators Capacity by Acting on Active Mass of Oxide-Nickel Electrode. Dnepropetrovsk, 2010. Space Technologies: Present and Future: The III International Conference: Collection of Abstracts (Dnepropetrovsk, 20-22 April, 2011). Dnepropetrovsk, 2011. S., Frolov V. Available at: https://doi.org/10.33136/stma2018.01.063 . S., Frolov V. S., Frolov V. S., Frolov V. S., Frolov V. S., Frolov V. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX на сайт ДП «КБ «Південне»
]]>

11. Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Kharkiv Aviation Institute, Kharkiv, Ukraine2 .

Page: Kosm. teh. Raket. vooruž. 2018 (1); 63-68

DOI: https://doi.org/10.33136/stma2018.01.063

Language: Russian

Annotation: Several measures to ensure long service life of electrochemical batteries are proposed: electrochemical battery performance evaluation, study of theoretical basis for improvement and building of experimental bench equipment.

Key words:

Bibliography:
1. Davidov А. О. Development of Technique of Alkaline Nickel-Cadmium Accumulators Recovery to Prolong their Service Life. Aerospace Hardware and Technology. 2009. No. 8 (65). P. 132-137.
2. Bezruchko K. V., Vasilenko A. S., Davidov A. О., Kharchenko А. А. Recovery of Open-Type Nickel-Cadmium Accumulators Capacity by Acting on Active Mass of Oxide-Nickel Electrode. Problems and Chemistry and Chemical Technology. 2002. No. 2. P. 66-70.
3. Azarnov A. L. et al. Express-Diagnostics Technique for Electrochemical Accumulators. The ХII International Scientific-Practical Youth Conference “Man and Space”: Collection of abstracts. Dnepropetrovsk, 2010. P. 78.
4. Bezruchko K. V., Davidov A. O. Express-Diagnostics Method for Electrochemical Energy Storage Units of Space Rocketry Power Systems. Space Technologies: Present and Future: The III International Conference: Collection of Abstracts (Dnepropetrovsk, 20-22 April, 2011). Dnepropetrovsk, 2011. P. 5-6.
5. Bezruchko K. V., Davidov A. O., Sinchenko S. V. Pulse Diagnostics Method for Nickel-Cadmium Accumulators. The V Scientific–Technical Conference “Present-Day Problems of Space Rocketry and Space Technologies”: Collection of abstracts. Kharkiv, 2010. P. 13.
6. Bezruchko K. V., Davidov A. O., Katorgina J. G., Sinchenko S. V., Shirinsky S. V. Method of Predicting the Performance of Electrochemical Batteries Working during Long Time in Space Rocketry Power Systems. Electrical and Electronic Engineering. 2013. Vol. 3 (3). P. 81-85.
7. Bezruchko K. V. et al. Development and Approbation of Mathematical Model to Predict the Characteristics of Electrochemical Accumulators of Space Rocketry Power Systems. MAI News. 2013, Vol. 20, No. 1. P. 38-49.
Downloads: 20
Abstract views: 
415
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Portland; San Mateo; San Mateo; San Mateo; Boardman; Ashburn14
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems
]]>
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft https://journal.yuzhnoye.com/content_2017_2/annot_21_2_2017-en/ Wed, 09 Aug 2023 12:32:56 +0000 https://journal.yuzhnoye.com/?page_id=29940
Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft Authors: Husarova I. 1 , Potapov O. Improving Metallic Thermal-Protection-System Hypervelocity Impact Resistance Through Numerical Simulation. Advanced metallic thermal protection system development / M. Potapov, Y. Frolov, Т. Potapov, V. Litvinenko / Application No. O., Potapov O. (2017) "Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft" Космическая техника. O., Potapov O. O., Potapov O. O., Potapov O. O., Potapov O. O., Potapov O. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX на сайт ДП «КБ «Південне»
]]>

21. Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2017 (2); 121-126

Language: Russian

Annotation: The paper considers the TZS-U design developed by Yuzhnoye SDO specialists for windward part of reusable spacecraft with external metal three-layer panel, U-like joint and tiled thermal protection, in which the problem is solved of compensation of thermal expansions and sealing of gaps; for optimization of structural mass. The specially created dispersion-hardened powder alloy based on nichrome and aluminum with yttrium dioxide with decreased specific mass of 7500 kg/m3 and lighter felt of MKRF brand are used , and honeycomb filler of three-layer panel is replaced by the filler with square cell.

Key words:

Bibliography:
1. Aerothermal performance and structural integrity of a René-41 thermal protection system at Mach 6.6 / W. D. Deveikis, R. Miserentino, I. Weinstein, J. L. Schideler. NASA-TN-D-7943, NASA, Washington DC. 1975. 105 р.
2. Poteet C. C., Blosser M. L. Improving Metallic Thermal-Protection-System Hypervelocity Impact Resistance Through Numerical Simulation. Journal of Spacecraft and Rockets. 2004. Vol. 41, No. 2. Р. 221-232.
3. Advanced metallic thermal protection system development / M. L. Blosser, R. R. Chen, I. H. Schmidt et al. AIAA-2002-0504; AIAA, Washington DC. 2002. 56 р.
4. David E. European Directions for Hypersonic Thermal Protection Systems and Hot Structures. 31st Annual Conference on Composite Materials and Structures (Daytona Beach, FL, January 22, 2007). 44 р.
5. Gusarova I. A. Selection of Scheme of Heat Protection Tile Attachment to Reusable Spacecraft Body. Problems of Designing and Manufacturing Flying Vehicle Structures. 2016. No. 4 (88). P. 105-113.
6. Gusarova I. A. Evaluation of Thermal Resistance of Three-Layer Honeycomb Panel Produced from YuIPM-1200 Alloy by Method of Diffusion Welding in Vacuum / I. A. Gusarova, М. Parko, А. М. Potapov, Y. V. Fal’chenko, L. V. Petrushinets, Т. V. Melnichenko, V. E. Fedorchuk. Automatic Welding. 2016. No. 12 (759). P. 31-35.
7. Patent 108096 Ukraine. Method of Producing Heat-Resistant Alloy Based on Nichrome / V. V. Skorokhod, V. P. Solntsev, G. O. Frolov, Т. O. Solntseva, О. М. Potapov, V. G. Tikhiy, I. A. Gusarova, Y. M. Litvinenko / Application No. а2012 11691; Claimed 04.10.2012; Published 25.03.2015, Bulletin No. 6. 4 p.
Downloads: 16
Abstract views: 
301
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Dublin; Monroe; Ashburn; Ashburn; San Mateo; San Mateo; San Mateo; Boardman; Boardman10
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft
]]>
3.1.2017 Development Strength Test of Modified Antares ILV https://journal.yuzhnoye.com/content_2017_1/annot_3_1_2017-en/ Thu, 22 Jun 2023 12:48:29 +0000 https://journal.yuzhnoye.com/?page_id=29366
Development Strength Test of Modified Antares ILV Authors: Klimenko D. 2 , Frolov V. 2017 (1); 18-22 Language: Russian Annotation: The methodology and the results of strength tests of Antares ILV modified bay and case joint are presented. I., Frolov V. (2017) "Development Strength Test of Modified Antares ILV" Космическая техника. "Development Strength Test of Modified Antares ILV" Космическая техника. I., Frolov V. quot;Development Strength Test of Modified Antares ILV", Космическая техника. I., Frolov V. I., Frolov V. I., Frolov V. I., Frolov V. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX на сайт ДП «КБ «Південне»
]]>

3. Development Strength Test of Modified Antares ILV

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; DPHZ-DKAU, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2017 (1); 18-22

Language: Russian

Annotation: The methodology and the results of strength tests of Antares ILV modified bay and case joint are presented. The data are given on tested assemblies loading schemes, loading sequence, methods of loads realization, and applied test equipment.

Key words:

Bibliography:
Downloads: 21
Abstract views: 
202
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Monroe; Ashburn; Seattle; Boardman; Seattle; Seattle; Portland; San Mateo; San Mateo; San Mateo; Boardman12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Dnipro2
3.1.2017 Development Strength Test of Modified Antares ILV
3.1.2017 Development Strength Test of Modified Antares ILV
3.1.2017 Development Strength Test of Modified Antares ILV
]]>
7.2.2016 Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher https://journal.yuzhnoye.com/content_2016_2-en/annot_7_2_2016-en/ Tue, 06 Jun 2023 11:54:33 +0000 https://journal.yuzhnoye.com/?page_id=28314
1 , Frolov V. 2 Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 1 ; Kharkiv Aviation Institute, Kharkiv, Ukraine 2 Page: Kosm. S., Frolov V. S., Frolov V. S., Frolov V. S., Frolov V. S., Frolov V. S., Frolov V. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX на сайт ДП «КБ «Південне»
]]>

7. Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Kharkiv Aviation Institute, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2016 (2); 52-56

Language: Russian

Annotation: It also contains the description of generalized mathematical model which can be used for selection of a specific type of chemical current sources for the self-contained power supply system of self-propelled launcher.

Key words:

Bibliography:
Downloads: 17
Abstract views: 
208
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Ashburn; Seattle; Portland; Boardman10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro; Dnipro2
7.2.2016 Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher
7.2.2016 Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher
7.2.2016 Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher
]]>
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source https://journal.yuzhnoye.com/content_2019_1-en/annot_9_1_2019-en/ Thu, 25 May 2023 12:09:50 +0000 https://journal.yuzhnoye.com/?page_id=27714
The method is expected to be used to investigate kR wave parameter. The algorithm and program of calculation of sound pressure levels were developed in JAVA language. In the frequencies lower than 150 Hz, the sound pressure levels are lower. Vyp. Metod opredeleniya vida istochnikov akusticheskogo izlucheniya v pervye secundy starta raket kosmicheskogo naznacheniya/ G. Sokol// Systemne proektuvannya ta analiz characteristic aerokosmichoi techniki: Zb. I., Frolov V. P., Kotlov V. Kurs lektsiy po teorii zvuka/ S. Sapozhkov M. Sapozhkov. V., Matsipura V. Turbulentnye strui – staticheskie modeli i modelirovanie krupnykh vikhrey/ K.
]]>

9. Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 64-71

DOI: https://doi.org/10.33136/stma2019.01.064

Language: Russian

Annotation: During lift-off of integrated launch vehicles, the propulsion system jet generates acoustic field. Therewith, the loads can be created that are critical for the launching equipment, rocket body and especially for the spacecraft, which are under the fairing. To take into account the effects on these elements, it is necessary to determine the characteristics of generated acoustic field. The method was developed that allows modeling the acoustic fields during integrated launch vehicle lift-off based on determination of acoustic sources type. In particular, modeling of Cyclone-4M ILV jet acoustic radiation by bulky source was performed. This provided the possibility to calculate acoustic pressure amplitudes in ILV ambient medium and to evaluate acoustic effect on the rocket body at certain points. The method is expected to be used to investigate kR wave parameter. The modeling of integrated launch vehicle propulsion system (ILV PS) jet acoustic field as bulky radiation source was performed in the rocket flight leg where ILV ascent altitude does not exceed ~ 25 m. In this case, one should be based on the value of boundary frequency fb =150 Hz which separates two types of acoustic field: fb ˂ 150 Hz – front of acoustic wave of spherical type, fb > 150 Hz – front of acoustic wave of flat type. The algorithm and program of calculation of sound pressure levels were developed in JAVA language. The characteristics of acoustic fields sound pressure levels were calculated depending on radiation frequency taking into account environmental temperature. The maximal acoustic pressure level in 150 Hz frequency in the payload area outside the fairing – 155 dB, in the instrumentation bay area – 157 dB, in the intertank bay area – 172 dB, in the aft bay area – 182 dB. In the frequencies lower than 150 Hz, the sound pressure levels are lower. The calculation data are presented graphically.

Key words: integrated launch vehicle, acoustic field, sound pressure

Bibliography:

1. Dementiev V. K. O maximalnykh akusticheskykh nagruzkakh na rekety pri starte/ V. K. Dementiev, G. Ye. Dumnov, V. V. Komarov, D.A. Melnikov// Kosmonavtika I raketostroenie. 2000. Vyp. 19. P. 44-55.
2. Tsutsumi S., Ishii T., Ut K., Tokudone S., Chuuouku Y., Wado K. Acoustic Design of Launch Pad for Epsilon Launch Vehicle / Proceedings of AJCPP2014 . Asian Joint Conference on Propulsion and Power, March 5- 8, 2014, Jeju Island, Korea. AJCPP2014-090.
3. Panda J., Mosher R., Porter D.J. Identification of Noise Sources during Rocket Engine Test Firings and a Rocket Launch a Microphone Phased-Array // NASA / TM2013-216625, December 2013. P. 1-20.
4. Sokol G. I. Metod opredeleniya vida istochnikov akusticheskogo izlucheniya v pervye secundy starta raket kosmicheskogo naznacheniya/ G. I. Sokol// Systemne proektuvannya ta analiz characteristic aerokosmichoi techniki: Zb. nauk. pr. 2018. XXIV. Dnipro: Lira, 2018. P. 91-101.
5. Sokol G. I., Frolov V. P., Kotlov V. Yu. / Volnovoy parameter kak kriteriy v osnove metoda issledovaniya akusticheskikh istochnikov pro starte raket/ Aviatsionno-kosmicheskaya technika I technologia. 2018. 3 (147), May-June 2018. Kharkov: KhAI, 2018. P. 4-13. DОІ:http://doi.org /10.20535/0203- 3771332017119600.
6. Rzhevkin S. N. Kurs lektsiy po teorii zvuka/ S. N. Rzhevkin. M.: MGU, 1960. 261 p.
7. Tyulon V. N. Vvedenie v teoriyu izlucheniya I rasseyaniya zvuka / V. N. Tyulin. M.: Nauka, 1976. 253 p.
8. Sapozhkov M. A. Electroakustica/ M. A. Sapozhkov. M.: Svyaz, 1978. 272 p.
9. Grinchenko V. T., Vovk V. V., Matsipura V. T.. Osnovy akustiki. Kyiv: Nauk. dumka, 2007. 640 p.
10. Ultrazvuk: Malaya enciclopedia. M.: Nauka, 1983. 400 p.
11. Volkov K. N. Turbulentnye strui – staticheskie modeli i modelirovanie krupnykh vikhrey/ K. N. Volkov, V. N. Emelyanov, V. A. Zazimko. M.: Fizmatlit, 2013. 960 p.
12. Schildt G. Java 8. Polnoe rukovodstvo. 9-e izd. M.: Wiliams, 2015. 137 p.

Downloads: 19
Abstract views: 
396
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Dublin; Monroe; Ashburn; Ashburn; Seattle; Boydton; Portland; San Mateo; Boardman12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>