Search Results for “Gergel V. G.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 03 Apr 2024 07:06:56 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Gergel V. G.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 16.1.2019 Oscillation Processes in Rig at the Moment of SRM Transfer to Main Operation Mode https://journal.yuzhnoye.com/content_2019_1-en/annot_16_1_2019-en/ Wed, 24 May 2023 16:00:31 +0000 https://journal.yuzhnoye.com/?page_id=27721
, Gergel V. T., Gergel V. T., Gergel V. T., Gergel V. T., Gergel V. T., Gergel V. T., Gergel V.
]]>

16. Oscillation Processes in Rig at the Moment of SRM Transfer to Main Operation Mode

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 110-113

DOI: https://doi.org/10.33136/stma2019.01.110

Language: Ukrainian

Annotation: This paper describes the configuration of the rig, designed to fasten the solid-propellant rocket engine (hereunder referred to engine) during their testing, with engine thrust measurements by force transducers. It is determined that rig is the important link in the measurement chain, which directly impacts the thrust measurements, values of which will be used for calculation of the most important engine characteristics (for example, total burn). It was observed that when engine starts the basic mode of operation the thrust-measuring system of the rig is impacted by the dynamic loading caused by the engine thrust, which results in the occurrence of the oscillating processes in the rig, therefore it is important to know the behavior of these oscillating processes to estimate their impact on the thrust measurement during the design of the rigs and their thrustmeasuring systems. It is shown that if there is no procedure in the design practice to define the mode of oscillations in the rig it is rational to do it analyzing experimental thrust – time curves when different engines start the basic mode of operation. Number of experimental thrust (displacement of the engine/rig moving part) – time curves are provided for analysis when four different engines with different ballistic characteristic and capabilities start the basic mode of operation. Oscillating processes in the rig distort the physical behavior of the thrust, which requires additional analysis of the data following the tests, but since the oscillations subside rapidly, they will not significantly affect the calculation of the total burn. It is also observed that frequency of oscillations of the moving part of the rig, registered by the motion sensor, coincides with oscillation frequency, registered by the force transducer, moreover stable behavior of the oscillating processes, registered by the force transducer of the same engines, when they started the basic mode of operation, indicate the stable behavior of those engines and stable performance of the rig.

Key words: firing rig tests of the engine, thrust measurement, engine thrust and displacement – time diagrams

Bibliography:
Downloads: 17
Abstract views: 
328
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Seattle; Ashburn; Boardman; Seattle; Portland; Ashburn9
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro1
16.1.2019 Oscillation Processes in Rig at the Moment of SRM Transfer to Main Operation Mode
16.1.2019 Oscillation Processes in Rig at the Moment of SRM Transfer to Main Operation Mode
16.1.2019 Oscillation Processes in Rig at the Moment of SRM Transfer to Main Operation Mode

Keywords cloud

]]>
14.2.2019 Selection of the validation algorithm for the solid rocket motor trust measurement procedure https://journal.yuzhnoye.com/content_2019_2-en/annot_14_2_2019-en/ Mon, 15 May 2023 15:46:10 +0000 https://journal.yuzhnoye.com/?page_id=27216
, Gergel V. O., Gergel V. O., Gergel V. O., Gergel V. O., Gergel V. O., Gergel V. O., Gergel V.
]]>

14. Selection of the validation algorithm for the solid rocket motor trust measurement procedure

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 103-108

DOI: https://doi.org/10.33136/stma2019.02.103

Language: Russian

Annotation: The solid rocket motors thrust is measured according to the developed measurement procedure; fulfilment of its requirements guarantees obtaining the results with required accuracy parameters. Compliance of this procedure with the measurement accuracy requirements is confirmed by way of its validation that can be performed according to different algorithms. The proposed article deals with two validation algorithms of measurement procedure for solid rocket motor thrust up to 30 tf – end-to-end and link-by-link validation methods. The composition of measurement channel, the experimental works performed at each validation algorithm are described, the calculation formulas to evaluate the limits of absolute measurement error and the obtained numerical values of the latter are presented. The comparative analysis of the results of validation procedure of solid rocket motor thrust measurement procedure obtained during metrological investigations of thrust measurement channel by end-to-end and link-by-link validation methods shows that to ensure the required measurement accuracy, the algorithms of end-to-end method is preferable, at which the lower values of reduced error can be obtained as compared with the algorithm of link-by-link validation.

Key words: measurement channel, reduced error, calibration characteristic, electric signal.

Bibliography:
1. Kotsyuba A. M., Zgurya V. I. Otsinyuvannya prydantosti (validatsiya) metodik vyprobuvannya ta calibruvannya: detalizatsia vymog. Metrologia ta prylady. 2013. № 6. S. 22–24.
2. Kotsyuba A. M., Domnytska V. K., Kotsyuba L. G. Validatsia metodik calibruvannya. Standartizatsia, certifikatsia, yakist’. 2016. № 1. S. 41–45.
3. Kotsyuba A. M. Validatsia metodik calibruvannya mir fizichnykh velichin. Systemy obrobky informatsii. 2015. № 2 (127). S. 35–39.
Downloads: 19
Abstract views: 
336
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Dublin; Monroe; Ashburn; Ashburn; Seattle; Portland; San Mateo; Boardman; Boardman12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
14.2.2019 Selection of the validation algorithm for the solid rocket motor trust measurement procedure
14.2.2019 Selection of the validation algorithm for the solid rocket motor trust measurement procedure
14.2.2019 Selection of the validation algorithm for the solid rocket motor trust measurement procedure

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests https://journal.yuzhnoye.com/content_2023_1-en/annot_6_1_2023-en/ Fri, 12 May 2023 16:10:51 +0000 https://test8.yuzhnoye.com/?page_id=26990
T., Gergel V.
]]>

6. Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 56-62

DOI: https://doi.org/10.33136/stma2023.01.056

Language: Ukrainian

Annotation: This article dwells on results of firing bench testing of the solid-propellant rocket engine (SPRE), fastened to the thrust-measuring assembly stand. It is shown that when engine enters the steady-state mode of operation, plane (forward and rotation) vibrations of the SPRE can take place in the assembly stand due to the sudden pattern of thrust generation and displacement of the center of mass of the vibrating system from the engine axis. These vibrations distort measured values of engine thrust and pattern of its change versus time. The purpose of this work is to simulate the oscillating processes of the engine atop the assembly stand to single out in the distorted values of the measured thrust the components related to the processes in the engine and components, which are introduced into the thrust measurement by the oscillating processes in the system “assembly stand – engine”. Model of vibrating system is suggested, which consists of two rigidly connected bodies, containing elastic links, enabling forward and rotary motion and limited by the rigidity of the links. Mathematical model of the vibrating system is developed. Internal forces and moments acting in oscillatory system are defined. Method of numerical simulation of plane vibrations within the limits of the developed model is suggested. Plane vibrating motion and elastic force curve (curve based on force sensor readings) were simulated in thrust-measuring system for different cases of thrust curve and values of vibrating system parameters. Resonance condition was simulated and mutual influence of elastic parametrical link between forward and rotary vibrations was established. Impact of thrust-measuring system rigidity on peak values of force sensor readings was found out. Elastic force vibrations in thrust-measuring system with vibrating system parameters were simulated including variant of thrust change versus time, implemented during firing bench tests of one of the SPRE. It is shown that registered simulation results recreate thrust measurement results in pattern and values obtained by the force sensor during the firing bench tests, and owing to this, it was concluded that oscillating process parameters, assumed in the model, meet the actual ones. It is concluded that simulation provides objective interpretation of the thrust curve, reliable and comprehensive analysis of engine run during firing bench tests, more detailed and exact design of the assembly stand.

Key words: vibrating system, plane vibrations, forward vibrations, rotary vibrations, resonance, thrust measurement

Bibliography:

1. Beskrovniy I. B., Kirichenko A. S., Balitskiy I. P. i dr. Opyt predpriyatia po proektirovaniyu i ekspluatatsii stapeley dlya ispytaniy RDTT. Kosmicheskays technika. Raketnoye vooruzhennie: Sb. nauch.-techn. st. 2008. Vyp. 1. Dnepropetrovsk: GP «KB «Yuzhnoye». S. 119–127.
2. Lysenko M. T., Rogulin V. V., Beskrovniy I. B., Kalnysh R. V. Modelyuvannya kolyvann RDTP u stapeli, scho vynykaut pid chas VSV. Kosmicheskays technika. Raketnoye vooruzhennie: Sb. nauch.-techn. st. 2019. Vyp. 1. Dnepropetrovsk: GP «KB «Yuzhnoye».
3. Beskrovniy I. B., Lysenko M. T., Gergel V. G. Kolyvalnni processy u stapeli v moment vyhodu RDTP na ustalenniy rezhim roboty. Kosmicheskay technika. Raketnoye vooruzhennie: Sb. nauch.-techn. st. 2019. Vyp. 1. Dnepropetrovsk: GP «KB «Yuzhnoye».

Downloads: 27
Abstract views: 
378
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Ashburn; Mountain View; Boydton; Boydton; Boydton; Boydton; San Mateo; San Mateo; Boydton; Boydton; Boydton; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Sri Lanka Colombo; Colombo2
Ukraine Dnipro1
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>