Search Results for “Ivanov Y. N.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 06 Nov 2024 11:34:47 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Ivanov Y. N.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
P., Selivanov Yu. R., Selivanov Yu.
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 45
Abstract views: 
2602
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; North Bergen; Boydton; Plano; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
Ukraine Odessa; Dnipro2
Finland Helsinki1
Ethiopia Addis Ababa1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4 https://journal.yuzhnoye.com/content_2018_2-en/annot_4_2_2018-en/ Thu, 07 Sep 2023 10:54:18 +0000 https://journal.yuzhnoye.com/?page_id=30735
Turbopump Units of Rocket Engines Developed by DO-4 Authors: Ivanov Y. Centrifugal Pump: Patent 1021816 А, USSR: MPK 7F04D1/00, 7F04D29/04 / Ivanov Y. Auger-Centrifugal Pump: Patent 73783, Ukraine: MPK 7F04D29/66 / Ivanov Y. Patent 61082, Ukraine: MPK 7F16J15/34 / Ivanov Y. End Seal of High-Speed Shaft: Patent 48248, Ukraine: MPK F16J15/54, F04D29/10 / Ivanov Y. Patent 84023, Ukraine: MPK F04D1/00 / Ivanov Y. Ivanov Y. Turbopump Units of Rocket Engines Developed by DO-4 Автори: Ivanov Y. Turbopump Units of Rocket Engines Developed by DO-4 Автори: Ivanov Y. Turbopump Units of Rocket Engines Developed by DO-4 Автори: Ivanov Y. Turbopump Units of Rocket Engines Developed by DO-4 Автори: Ivanov Y.
]]>

4. Turbopump Units of Rocket Engines Developed by DO-4

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 25-33

DOI: https://doi.org/10.33136/stma2018.02.025

Language: Russian

Annotation: The article presents the experience of creating LRE turbopump units by the Rocket Engines Design Office (DO-4) at Yuzhnoye SDO. The best known turbopump units designs developed by DO are described. Both earlier developments of DO and the turbopump unit being now in final testing phase are considered. The design evolution of both separate assemblies and of entire unit is shown. The design evolution allowed increasing the unit’s lifetime dozens times. For example, the lifetime of the first turbopump units developed by DO did not exceed 150 s. Currently, the DO has in stock the engines with lifetime of ~19000 s. The information is presented on the problems that the designers faced in testing the turbopumop unit and the ways to solve them. The unique achievement are presented. At present, there are no analogs of some units in the world. The article presents the information on the latest achievements of DO, such as the face seal on pump vane discs whose use fully excludes unwanted leaks. Having analyzed the data presented, one may conclude that the Rocket Engines Design Office and Yuzhnoye SDO as a whole accumulated sufficient experience and knowledge allowing solving any problems that may arise when developing a new LRE turbopump unit, and successfully operating LRE with turbopump units, including those in the engines with generator gas afterburning created in recent years testify to a great value of accumulated experience.

Key words: liquid rocket engine, turbopump unit, pump, turbine

Bibliography:
1. Centrifugal Pump: Patent 1021816 А, USSR: MPK 7F04D1/00, 7F04D29/04 / Ivanov Y. N., Steblovtsev A. A.; Applicant and patent holder Yuzhnoye State Design Office. No. 3313928/25-06; claimed 06.07.1983, published 07.06.1984.
2. Auger-Centrifugal Pump: Patent 73783, Ukraine: MPK 7F04D29/66 / Ivanov Y. N., Pilipenko V. V., Zadontsev V. A., Drozd V. A.; Applicant and patent holder Yuzhnoye State Design Office. No. 2003021144; claimed 07.02.2003, published 15.09.2005.
3. End Seal. Patent 61082, Ukraine: MPK 7F16J15/34 / Ivanov Y. N., Chetverikova I. M.; Applicant and patent holder Yuzhnoye State Design Office. No. 990311536; claimed 19.03.1999, published 17.11.2003.
4. End Seal of High-Speed Shaft: Patent 48248, Ukraine: MPK F16J15/54, F04D29/10 / Ivanov Y. N., Steblovtsev A. A., Gameberger Y. A., Peredarenko V. M.; Applicant and patent holder Yuzhnoye State Design Office. No. 99031442; claimed 16.03.1999, published 15.08.2002.
5. Centrifugal Pump. Patent 84023, Ukraine: MPK F04D1/00 / Ivanov Y. N., Ivchenko L. F., Deshevykh S. A., Dan’kevich D. S.; Applicant and patent holder Yuzhnoye State Design Office. No. а200601399; claimed 13.02.2006, published 10.09.2008.
Downloads: 48
Abstract views: 
553
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; San Antonio; Matawan; Baltimore; Plano; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn29
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Unknown; Hong Kong;3
Canada Toronto; Monreale2
Germany; Falkenstein2
Finland Helsinki1
The Republic of Korea Daejeon1
Malaysia1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.1.2018 The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice https://journal.yuzhnoye.com/content_2018_1-en/annot_15_1_2018-en/ Tue, 05 Sep 2023 07:04:10 +0000 https://journal.yuzhnoye.com/?page_id=30474
The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice Authors: Shipko O. Ivanov. Missile Armaments: Collection of scientific-technical articles / Yuzhnoye SDO. The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice Автори: Shipko O. The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice Автори: Shipko O. The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice Автори: Shipko O. The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice Автори: Shipko O.
]]>

15. The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 91-100

DOI: https://doi.org/10.33136/stma2018.01.091

Language: Russian

Annotation: The article presents the main results obtained when solving the standardization tasks in Yuzhnoye SDO practice. The specific ways are presented of reducing the periods of work performance and increasing the accuracy of results due to the use of automated methods. The article also presents the recommendations in respect of sequence and methods of creating the standard data arrays, which allows optimizing the work process performance.

Key words:

Bibliography:
1. Matus G. V., Rud’ko K. V. Normalization of Terms of International Standards in Space Sphere. Standardization, Certification, Quality. 2013. No. 5. P. 19-24.
2. Shipko O. F., Matus G. V. Results of Using the Procedure of Terminological Monitoring for the Purpose of Normalization of Terms of International Standards in Space Sphere. Standardization, Certification, Quality. 2016. No. 3. P. 23-28.
3. ISO 10795:2011. Space Systems: Programme Management and Quality: Vocabulary. First edition 2011-08-15. Published in Switzerland: ISO, 2011. 37 p.
4. Classifier of Professions: DK 003:2010. (Effective from 2010-11-01). K., 2010. 746 p. (National Classifier of Ukraine).
5. Unified System of Design Documentation. Basic Provisions: Guide in Ukrainian and Russian / Under the general editorship of V. L. Ivanov. Lviv, 2001. 272 p. (Series “Normative Base of Enterprise”).
6. Streltsov E. V., Kolesnik N. Y. Method of Automated Monitoring of the State of Enterprise’s Normative Documentation Collection. Space Technology. Missile Armaments: Collection of scientific-technical articles / Yuzhnoye SDO. Dnepropetrovsk, 2015. No. 3. P. 99-102.
7. Fesenko E. Y., Kremena E. V. Design Documentation: Method of Automated Monitoring of Normative Documents Designations. Standardization, Certification, Quality. 2016. No. 2. P. 29-31.
8. The Law of Ukraine “On Standardization” dated 05.06.2014 No 1315-VII / News of Supreme Rada of Ukraine. 2014. No. 31. 1058 p. (With changes introduced as per Laws dated 15.01.2015 No. 124-VIII / News of Supreme Rada of Ukraine. 2015. No. 14. 96 p.).
9. Ukrainian Classifier of Normative Documents (ICS:2005, MOD): DK 004:2008. (Effective from 2009-04-01). К.: (Derzhspozhivstandard) State Consumption Standard of Ukraine, 2009. 97 p. (National Classifier of Ukraine).
10. Classification of Economic Activity Types: DK 009:2010. (Effective from 2012-01-01). К.: (Derzhspozhivstandard) State Consumption Standard of Ukraine, 2010. 42 p. (National Classifier of Ukraine).
11. State Classifier of Products and Services: DK 016:2010: [in 8 books]. (Effective from 2012-01-01). К.: (Derzhspozhivstandard) State Consumption Standard of Ukraine, 2010. (National Classifier of Ukraine). Book 1. 2011. 200 p. Book 2. 2011. 194 p. Book 3. 2011. 343 p. Book 4. 2011. 359 p. Book 5. 2011. 317 p. Book 6. 2011. 345 p. Book 7. 2011. 262 p. Book 8. 2011. 291 p.
12. Shipko A. F., Matus G. V. Methods to Improve Standardization Activity in Space Sphere. Space Technology. Missile Armaments: Collection of scientific-technical articles / Yuzhnoye SDO. Dnepropetrovsk, 2015. No. 3. P. 92-98.
Downloads: 41
Abstract views: 
886
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Baltimore;; Plano; Miami; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Germany Frankfurt am Main; Frankfurt am Main; Limburg an der Lahn; Falkenstein4
Ukraine Dnipro; Dnipro2
Unknown Canberra1
Pakistan Islamabad1
Canada Toronto1
Romania Voluntari1
Netherlands Amsterdam1
15.1.2018 The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice
15.1.2018 The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice
15.1.2018 The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice
]]>
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime https://journal.yuzhnoye.com/content_2019_1-en/annot_5_1_2019-en/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27710
R., Selivanov Yu.
]]>

5. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Language: Russian

Annotation: This article contains results of methodology and standards development for life prediction of launch site structures to launch various types’ launch vehicles into near-earth orbit. Launch sites have been built in various countries of the world (European Union, India, China, Korea, Russia, USA, Ukraine, France, Japan, etc.). In different countries they have their own characteristics, depending on the type and performance of the launch vehicles, infrastructure features (geography of the site, nomenclature of the space objects, development level of rocket and space technology), problems that are solved during launches, etc. Solution of various issues, arising in the process of development of the standards for justification of launch site life is associated with the requirement to consider complex problems of strength and life of nonuniform structural elements of launch sites and structures of rocket and space technology. Launch sites are the combination of technologically and functionally interconnected mobile and fixed hardware, controls and facilities, designed to support and carry out all types of operations with integrated launch vehicles. Launch pad, consisting of the support frame, flue duct lining and embedded elements for frame mounting, is one of the principal components of the launcher and to a large extent defines the life of the launch site. Main achievements of Ukrainian scientists in the field of strength and life are specified, taking into account the specifics of various branches of technology. It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Main methodological steps of launch site structures life prediction are defined. Service limit of launch site is suggested to be the critical time or the number of cycles (launches) over this period, after which the specified limiting states are achieved in the dangerous areas of the load-bearing elements: critical cracks, destruction, formation of unacceptable plastic deformations, buckling failure, corrosion propagation, etc. Classification of loads acting on the launch sites is given. The useful life of launch site is associated with estimation of the number of launches. Concept of low and multiple-cycle fatigue is used. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.

Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur

Bibliography:

1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.

Downloads: 48
Abstract views: 
816
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Springfield; Matawan; North Bergen; Plano; Miami; Miami; Miami; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Canada Toronto; Toronto; Monreale3
Unknown Hong Kong;2
Finland Helsinki1
India1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Keywords cloud

]]>
1.1.2023 On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism https://journal.yuzhnoye.com/content_2023_1-en/annot_1_1_2023-en/ Thu, 11 May 2023 15:25:30 +0000 https://test8.yuzhnoye.com/?page_id=26682
Therefore, within the bounds of further research, this approach requires the development both in terms of improving the reliability of the single assessment and in terms of giving the system qualities to the synthesized mathematical model. Otsenka i soozmerenie sil voyuuschih storon s uchetom kachestva sredstv porazhenya.  K voprosu o kolichestvenno-kachestvennoy otsenke sootnosheniya sil raznorodnyh gruppirovok voisk.  I., Ivanov V.  Ob odnom podhode k raschetu znacheniy boevyh potentsialov perspektivnyh sredstv vooruzhenniy.  O pokazatelyah boevogo potentsiala voinskyh formirovaniyMetodologicheskiy podhod k opredeleniyu boevyh potentsialov voiskovyh formirovanniy
]]>

1. On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 3-13

DOI: https://doi.org/10.33136/stma2023.01.003

Language: Ukrainian

Annotation: Substantiation of the research tools has been performed as a part of methodology development for the air and missile defense system. The problem under consideration is very complex due to the multifactorial nature of the research object, its qualitative variety and manifold structure, incomplete definition of the problem statement. Furthermore, the ability of modern technologies to produce different arms systems, which are capable of carrying out same class tasks, considerably increases the risk of making not the best decisions. Based on this, as well as taking into account the sharp increase in the cost of weaponry, the considered problem is classified as an optimization one that should be solved through the theory of operations research. In this theory, such task is viewed as a mathematical problem, and mathematical simulation is the basic method of research. The main types of mathematical models, their areas of application have been considered as a part of the analysis. The classification of mathematical models has been indicated according to the scale of reproduced operations, purpose, and goal orientation. Quantitative and qualitative correlation of forces has been accepted as the efficiency criterion, which determines a goal orientation of the model. The problems related to this have been shown. In particular, searching for the compromise between simplicity of the mathematical model and its adequacy to the research object is among these problems. Two of the basic approaches to principles of the military operation model construction and its assessment have been considered. The first is implemented through modeling of the combat operations. The second approach is based on the assumption that different armament types can be compared based on their contribution to the outcome of the operation, and on the possibility to assign «a weighting coefficient» named as a combat potential to each of these types. The modern level of problem solving related to this method has been shown. The reasonability of its application in the considered task, including the definition of forces correlation of the opposing parties, has been substantiated. The basic regulations of the construction concept of the required mathematical model and tools for its research have been formulated based on the analysis results: the assigned problem should be solved by analytical methods through the theory of operations research; the analytical model is the most acceptable conception of the analyzed level of the military operation; the synthesis of the model should be based on the idea of a combat potential. At the same time, it should be taken into account that the known approach to the definition of forces correlation, which uses the combat potential method, has a number of essential limitations, including the methodological ones. Therefore, within the bounds of further research, this approach requires the development both in terms of improving the reliability of the single assessment and in terms of giving the system qualities to the synthesized mathematical model.

Key words: multifunctional system, mathematical model, military unit, combat potential, correlation of forces, defensive sufficiency

Bibliography:
  1. Korshunov Yu. M. Matematicheskie osnovy kibernetiki. M., 1972. 376 s.
  2. Pavlovskiy R. I., Karyakin V. V. Ob opyte primeneniya matematicheskih modeley. Voennaya mysl. № 3. S. 54-57.
  3. Katasonov Yu. V. SShA: voennoe programmirovanie. M., 1972. 228 s.
  4. Analiz opyta ministerstva oborony SShA po sovershenstvovaniyu systemy plannirovaniya i upravleniya razrabotkami vooruzhenniya. TsIVTI, otchet № 11152 po NIR. M., 1967.
  5. Sokolov A. Razvitie matemaicheskogo modelirovaniya boevyh deistviy v armii SShA. Zarubezhnoye voennoe obozrenie. № 8. S. 27-34.
  6. Chuev Yu. V. Issledovanie operatsiy v voennom dele. M., 1970. 256 s.
  7. Yevstigneev V. N. K voprosu metodologii matematicheskogo modelirovaniya operatsii. Voennaya mysl. № 17. S. 33-41.
  8. Fendrikov I., Yakovlev V. I. Metody raschetov boevoy effectivnosti vooruzhennia. M., 1971. 224 s.
  9. Neupukoev F. O podhode k otsenke boevyh vozmozhnostey i boevoy effectivnosti voisk. Voennaya mysl. № 11. S. 70-72.
  10. AgeevYu. D., Geraskin A. P. K voprosu o povyshenii dostovernosti otsenki sootnosheniya sil protivoborstvuyuschih storon. Voennaya mysl. № 4. S. 54-58.
  11. Aleshkin A. V. Otsenka i soozmerenie sil voyuuschih storon s uchetom kachestva sredstv porazhenya. Voennaya mysl. № 10. S. 69-76
  12. Ponomarev O. K. O metodah kolichestvennoy i kachestvennoy otsenki sil storon. Voennaya mysl. № 4. S. 41-46.
  13. Luzyanin V. P., Elizarov V. S. Podhod k opredeleniyu sostava gruppirovki sil i sredstv oboronnoy dostatochnosti. Voennaya mysl. № 11. S. 25-29.
  14. SpeshilovL. Ya., Pavlovskiy R. I., Kabysh A. I. K voprosu o kolichestvenno-kachestvennoy otsenke sootnosheniya sil raznorodnyh gruppirovok voisk. Voennaya mysl. № 5.
  15. . Strelchenko B. I., Ivanov V. A. Nekotoye voprosy otsenki sootnosheniya sil i sredstv v operatsii. Voennaya mysl. № 10. S. 55-61.
  16. Morozov N. A. O metodologii kachestvennogo analiza bolshih voennyh system. Voennaya mysl. № 7. S. 19-22.
  17. Terehov A. G. O metodike rascheta sootnosheniya sil v operatsii. Voennaya mysl. № 9. S. 51-57.
  18. Tsygichko V. A., Stokli F. Metod boevyh potentsialov. Istoria i nastoyaschee. Voennaya mysl. № 4. S. 23-28.
  19. BoninA. S. Osnovnye polozheniya metodicheskyh podhodov k otsenke boevyh potentsialov i boevyh vozmozhnostey aviatsionnyh formirovaniy. Voennaya mysl. № 1. S. 43-47.
  20. Bonin A. S., Gorchitsa G. I. O boevyh potentsialah obraztsov VVT, formirovaniy i sootnosheniyuah sil gruppirovok storon. Voennaya mysl. № 4. S. 61-67.
  21. SereginG. G., Strelkov  N., Bobrov V. M. Ob odnom podhode k raschetu znacheniy boevyh potentsialov perspektivnyh sredstv vooruzhenniy. Voennaya mysl. 2005. № 10. S. 32-38. https://doi.org/10.1016/S1097-8690(05)70764-2
  22. Morozov N. A. Esche raz o boevyh potentsialah. Voennaya mysl. № 9. S. 75-79.
  23. Naryshkin V. G. O pokazatelyah boevogo potentsiala voinskyh formirovaniy. Voennaya mysl. № 1. S. 68-72.
  24. Kostin N. A. Metodologicheskiy podhod k opredeleniyu boevyh potentsialov voiskovyh formirovanniy. Voennaya mysl. № 10. S. 44-48
  25. Ostankov V. I. Obosnovanie boevogo sostava gruppirovok voisk (sil). Voennaya mysl. № 1. S. 23-28.
Downloads: 10
Abstract views: 
1038
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Biscoe; Columbus; Ashburn; San Mateo4
Ukraine Dnipro; Kremenchuk2
Germany Limburg an der Lahn; Falkenstein2
Unknown1
Singapore Singapore1
1.1.2023 On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism
1.1.2023 On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism
1.1.2023 On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism

Keywords cloud

]]>