Search Results for “Kalinichenko D. S.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:52:47 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Kalinichenko D. S.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 9.1.2020 Experimental investigation of a liner-free propellant tank made from polymer composite materials https://journal.yuzhnoye.com/content_2020_1-en/annot_9_1_2020-en/ Wed, 13 Sep 2023 10:43:08 +0000 https://journal.yuzhnoye.com/?page_id=31035
S., Kalinichenko D. S., Kalinichenko D. S., Kalinichenko D. S., Kalinichenko D. S., Kalinichenko D. S., Kalinichenko D.
]]>

9. Experimental investigation of a liner-free propellant tank made from polymer composite materials

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 90-98

DOI: https://doi.org/10.33136/stma2020.01.090

Language: Russian

Annotation: The exploratory and experimental investigations were conducted into design of propellant tank made of composite polymer materials for work in cryogenic environment at operating pressure of 7.5 kgf/cm2 . When determining the configuration of a liner-free composite propellant tank, the main requirement was ensuring its leak-tightness at internal excess pressure and cryogenic temperature effect. The world experience of creating similar designs was analyzed and the requirements were defined imposed on configuration of propellant tank load-bearing shells. Before defining the final configuration, the types of materials, reinforcing patterns, and possible ways to ensure leak-tightness were analyzed, and preliminary tests were conducted of physical and mechanical characteristics of thin-wall samples of composite materials and tubular structures with different reinforcing patterns. The tests of carbon plastic samples were conducted at different curing modes to determine the most effective one from the viewpoint of strength characteristics and the tests for permeability by method of mouthpiece were conducted. The tests of pilot propellant tank showed that the calculated values of deformations and displacements differ from the experimental values by no more than 10 %. Using the parameters measurement results from the tests on liquid nitrogen, the empirical formulas were obtained to calculate linear thermal expansion coefficient of the package of materials of load -bearing shell. The empirical dependences were constructed of relative ring deformations at load-bearing shell middle section on pressure and temperature. The tests confirmed correctness of adopted solutions to ensure strength and leak-tightness of propellant tank load-bearing shell at combined effect on internal excess pressure and cryogenic temperature, particularly at cyclic loading. The materials used and propellant tank manufacturing technologies ensure leak-tightness of load-bearing shell at liquid nitrogen operating pressure of 7.5 kgf/cm2 and strength at excess pressure of 15 kgf/cm2 and allow conducting approbation of prospective stage of the integrated launch vehicle.

Key words: load-bearing shell, permeability, cryogenic propellant, relative deformations, linear thermal expansion coefficient

Bibliography:
1. Frantsevich I. М., Karpinos D. М. Kompozitsionnye materialy voloknistogo stroeniia. K., 1970.
2. TSM YZH ANL 009 00. Composite fuel tank for ILV, Dnipro, Yuzhnoye SDO, 2019.
3. Zheng H., Zeng X., Zhang J., Sun H. The application of carbon fiber composites in cryotank. Solidification. 2018. https://doi.org/10.5772/intechopen.73127
Downloads: 20
Abstract views: 
939
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Los Angeles; North Bergen; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Portland; San Mateo12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro1
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials

Keywords cloud

]]>
4.1.2017 Basic Selection Criteria of Heat-Resistant and Thermal Protective Structures for High-Altitude Hypersonic Flying Vehicle https://journal.yuzhnoye.com/content_2017_1/annot_4_1_2017-en/ Thu, 22 Jun 2023 12:38:35 +0000 https://journal.yuzhnoye.com/?page_id=29370
1 , Kalinichenko D. 2 Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 1 ; Oles Honchar Dnipro National University, Dnipro, Ukraine 2 Page: Kosm. Key words: Bibliography: 1. Sidov, I. 2 Avduyevsky V. Avduyevsky, B. М., Kalinichenko D. (2017) "Basic Selection Criteria of Heat-Resistant and Thermal Protective Structures for High-Altitude Hypersonic Flying Vehicle" Космическая техника. "Basic Selection Criteria of Heat-Resistant and Thermal Protective Structures for High-Altitude Hypersonic Flying Vehicle" Космическая техника. М., Kalinichenko D. quot;Basic Selection Criteria of Heat-Resistant and Thermal Protective Structures for High-Altitude Hypersonic Flying Vehicle", Космическая техника. М., Kalinichenko D. М., Kalinichenko D. М., Kalinichenko D. М., Kalinichenko D.
]]>

4. Basic Selection Criteria of Heat-Resistant and Thermal Protective Structures for High-Altitude Hypersonic Flying Vehicle

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2017 (1); 23-29

Language: Russian

Annotation: The thermal analysis was made for external surfaces of a reusable high-altitude supersonic flying vehicle being a part of a space transportation system. The basic criteria were determined for selection of its heat-resistant and heat-protective structures.

Key words:

Bibliography:
1. Kondratenko F. I. et al. Aerodynamic Heating and Thermal Protection of Intercontinental Ballistic Missiles / F. I. Kondratenko, P. S. Savoysky, V. I. Sidov, I. M. Fomishenko. М, 1973. 288 p.
2 Avduyevsky V. S. et al. Fundamentals of Heat Transfer in Aerospace Engineering / V. S. Avduyevsky, B. M. Galitseisky, G. A. Glebov. М., 1975. 624 p.
Downloads: 18
Abstract views: 
299
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Monroe; Ashburn; Boardman; Seattle; San Mateo; Boardman; Ashburn9
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Dnipro2
4.1.2017 Basic Selection Criteria of Heat-Resistant and Thermal Protective Structures for High-Altitude Hypersonic Flying Vehicle
4.1.2017 Basic Selection Criteria of Heat-Resistant and Thermal Protective Structures for High-Altitude Hypersonic Flying Vehicle
4.1.2017 Basic Selection Criteria of Heat-Resistant and Thermal Protective Structures for High-Altitude Hypersonic Flying Vehicle
]]>