Search Results for “Kaplun S. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Fri, 21 Jun 2024 08:16:05 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Kaplun S. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge https://journal.yuzhnoye.com/content_2024_1-en/annot_12_1_2024-en/ Mon, 17 Jun 2024 11:36:02 +0000 https://journal.yuzhnoye.com/?page_id=35070
Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Yunusov A. Vestnik nauki. posibnik, vydavnytstvo TNTU im. Problemy tertya ta znoshuvannya. Visn. Khmelnitskogo natsionalnogo universitetu. Technologiya, materialy, struktura i svoistva. Visnik NTU «KhPI». A., Belous V. Technology audit and production reserves. V., Kulbovsliy I. Visn. Vestnik UGATU. Yu., Vershinin D. Vestnik UGATU. A., Knyazev S. Kaplun V. Missile armaments, vol. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX Keywords cloud Your browser doesn't support the HTML5 CANVAS tag.
]]>

12. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Ukrainian State University of Science and Technologies2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 102-113

Language: Ukrainian

Annotation: Steel hardening technology is considered, which implies modification of the steel surface with the method of ion-plasma nitriding in glow discharge. Ion-plasma nitriding is a multi-factor process, which requires the study of the influence of nitriding process conditions on the structure of modified layers, which, in its turn, determines their mechanical properties. The subjects of research included: austenitic steel 12X18Н10T, carbon steel Ст3 and structural steel 45. There were two conditions of plasma creation during the research: free location of samples on the surface of the cathode (configuration I) and inside the hollow cathode (configuration II). Optimal parameters of the ion-plasma nitriding process have been determined, which provide stability of the process and create conditions for intensive diffusion of nitrogen into the steel surface. Hydrogen was added to the argon-nitrogen gaseous medium to intensify the nitriding process. Working pressure in the chamber was maintained within the range of 250-300 Pa, the duration of the process was 120 minutes. Comparative characteristics of the structure and microhardness of the modified surfaces of the steels under study for two ion-plasma nitriding technologies are presented. Metallographic examination of the structure of the surface modified layers in the cross section showed the presence of the laminated nitrided layer, which consists of different phases and has different depths, depending on the material of the sample and treatment mode. Nitrided layer of 12Х18Н10Т steel consisted of four sublayers: upper “white” nitride layer, double diffuse layer and lower transition layer. The total depth of the nitrided layer after the specified treatment time reached 23 μm, use of hollow cathode increased it by 26% to 29 μm. The nitrided layers of steel Ст3 and steel 45 consisted of two sublayers – thick “white” nitride layer and general diffuse layer with a thickness of about 18 μm. The microhardness of the nitrided layer of steel Ст3 was 480 HV, increasing by 2,5 times, and for steel 45 was 440 HV, increasing by 1,7 times. The use of hollow cathode for these steels reduces the depth of the nitrided layer, but at the same time the microhardness increases due to the formation of a thicker and denser nitride layer on the surface. The results of the conducted research can be used to strengthen the surfaces of the steel parts in rocket and space technology, applying high-strength coatings.

Key words: ion nitriding, glow discharge, cross-sectional layer structure, hardening, microhardness

Bibliography:

1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49.
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12.
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108.
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52.
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35.
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p.
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283.
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68.
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.

Downloads: 10
Abstract views: 
979
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Phoenix; Ashburn; Des Moines; Boardman5
Ukraine Kyiv; Dnipro2
Finland Helsinki1
Singapore Singapore1
Netherlands Amsterdam1
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
6.2.2016 Experimental Investigations into Results of Testing Cyclone-4 ILV Thermostating System Mating Points https://journal.yuzhnoye.com/content_2016_2-en/annot_6_2_2016-en/ Tue, 06 Jun 2023 11:53:22 +0000 https://journal.yuzhnoye.com/?page_id=28312
2 , Skokov O. 2 , Kaplun S. The obtained test data is analyzed, and conclusions are drawn on the effect of different factors on joint performance including force action on ILV in disconnection. S., Skokov O. I., Kaplun S. (2016) "Experimental Investigations into Results of Testing Cyclone-4 ILV Thermostating System Mating Points" Космическая техника. "Experimental Investigations into Results of Testing Cyclone-4 ILV Thermostating System Mating Points" Космическая техника. S., Skokov O. I., Kaplun S. quot;Experimental Investigations into Results of Testing Cyclone-4 ILV Thermostating System Mating Points", Космическая техника. Missile armaments, vol. S., Skokov O. I., Kaplun S. S., Skokov O. I., Kaplun S. S., Skokov O. I., Kaplun S. S., Skokov O. I., Kaplun S.
]]>

6. Experimental Investigations into Results of Testing Cyclone-4 ILV Thermostating System Mating Points

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products2

Page: Kosm. teh. Raket. vooruž. 2016 (2); 43-51

Language: Russian

Annotation: The results of ground development test and investigation of Cyclone-4 ILV low-pressure air thermostating system joints are presented. The obtained test data is analyzed, and conclusions are drawn on the effect of different factors on joint performance including force action on ILV in disconnection. An assessment of applicability of the tested joints, as baseline design, on other similar space launch systems is performed.

Key words:

Bibliography:
Downloads: 29
Abstract views: 
264
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Phoenix; Monroe; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Des Moines; Boardman; Ashburn; Boardman17
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Dnipro2
China Pekin1
Finland Helsinki1
Romania Voluntari1
6.2.2016 Experimental Investigations into Results of Testing Cyclone-4 ILV Thermostating System Mating Points
6.2.2016 Experimental Investigations into Results of Testing Cyclone-4 ILV Thermostating System Mating Points
6.2.2016 Experimental Investigations into Results of Testing Cyclone-4 ILV Thermostating System Mating Points
]]>
7.1.2023 Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems https://journal.yuzhnoye.com/content_2023_1-en/annot_7_1_2023-en/ Fri, 12 May 2023 16:10:58 +0000 https://test8.yuzhnoye.com/?page_id=26991
Damper, made of easily deformable aluminum alloy, is also installed to decrease the internal impact of the rod against the explosive bolt body. Obtained values of the mechanical momentum, I = 0,4÷0,7 N•s and shock load spectrum – g-load 1950 g at the frequency range up to 5000 Hz, meet the up-to-date requirements to pyrotechnical devices. Dnepropetrovsk, 2013. Dnepropetrovsk, 2013. Yrtsev L. I., Kaplun S. Dnepropetrovsk, 2015. O vybore materialov dlya sozdaniya rukavov stykovki system termostatirovania sovremennyh RKN. Dnepropetrovsk, 2016. Missile armaments, vol. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX Keywords cloud Your browser doesn't support the HTML5 CANVAS tag.
]]>

7. Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products2

Page: Kosm. teh. Raket. vooruž. 2023 (1); 63-69

DOI: https://doi.org/10.33136/stma2023.01.063

Language: Ukrainian

Annotation: Explosive bolts are widely used as actuating devices in the spacecraft separation systems. Explosive bolt body is divided into parts as a result of engagement of the pyromixture placed inside. Activated explosive bolts have negative mechanical effect on the interface elements and sensitive electronic devices installed nearby owing to explosive behavior of the pyromixture combustion, generating shock front with high pressure and velocities, impacts and collisions of the structural units. Cumulative effect of the above factors on the separated objects is called pyroshock. For separation systems with increased requirements to external actions and cleanliness, authors developed a shear explosive bolt or pyrobolt, divided into parts, cutting the body walls in segments, which are set in motion by action of the pressure of gases, released as a result of pyrocartridge activation. The basic sources of pyroshock for these shear explosive bolts with segments are: combustion of pyromixture, internal impacts of structural units against the bolt body; cutting of body wall in segments, release of preliminary deformed interface after activation. Structural solutions are presented to reduce the pyroshock per each of the components. Vibration impulsive loading during pyromixture combustion is reduced by optimization of explosive quantity, finding its minimum to provide the reliable activation of the device. To reduce the impact on the explosive bolt elements and shock front interface the rubber gasket is installed in the path of shock wave distribution, partially disseminating and absorbing its kinetic energy. Damper, made of easily deformable aluminum alloy, is also installed to decrease the internal impact of the rod against the explosive bolt body. Functional testing of the device, using the pendulum suspension and measuring separation speed and vibration impulsive loading, showed that body parts of the shear explosive bolt with segments are separated without significant impact loads and discharge of high-temperature gases and debris, providing reliable separation of compartments and units without damaging the sensitive equipment. Obtained values of the mechanical momentum, I = 0,4÷0,7 N•s and shock load spectrum – g-load 1950 g at the frequency range up to 5000 Hz, meet the up-to-date requirements to pyrotechnical devices.

Key words: explosive bolt, pyroshock, shock wave, pyrocartridge, high-temperature gases, damper

Bibliography:
1. Bigun S. A., Khorolskiy M. S. i dr. Tipy i konstruktivnye osobennosti uzlov stykovki system termostatirovania golovnyh blokov i otsekov raket-nositeley kosmicheskyh apparatov. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. GP «KB «Yuzhnoye». Dnepropetrovsk, 2013. Vyp. 1. S. 65-68.

2. Bigun S. A., Khorolskiy M. S. Problemnye voprosy sozdania uzlov stykovki system termostatirovania raket kosmicheskogo naznachenia. Kosmicheskaya technika. Raketnoe vooruzhenie. Space technology Missile armaments: sb. nauch.-techn. st. GP «KB «Yuzhnoye». Dnepropetrovsk, 2013. Vyp. 2. S. 132-138.
3. Pat. Frantsii №2658479 (А2), 1991, MPK kl. В64G 1/40; В64G 1/64, В64G 5/00.
4. Pat. Frantsii №2685903 (А1), 1993, MPK kl В64G 5/00; F41F3/055; F02K9/44.
5. Pat. Rossiyskoi Federatsii №2473003-S1, 2011 r., MPK7F16L 37/20.
6. Yrtsev L. N., Bukhin B. L. Rezina kak konstruktsionniy material. Bolshoy spravochnik rezinschika. V dvuh chastyah. Ch. 1. Kauchuki i ingredienty. Pod red. S. V. Reznichenko, Yu. L. Morozova. M., 2012. 744 s.
7. GOST 263-75. Rezina. Metod opredelenia tverdosti po Shoru A (s izmeneniyami № 1, 2, 3, 4). M., 1989. 10 s.
8. Koshelev F. F., Kornev A. Ye., Bukanov A. M. Obschaya technologia reziny. Izd. 4-e, pererab. i dop. M., 1978. 528 s.
9. Skokov A. I., Kaplun S. V., Bogutskaya Ye. A., Khorolskiy M. S., Bigun S. A. Technologicheskie aspekty sozdaniya rukavov stykovki system termostatirovania raket-nositeley. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. GP «KB «Yuzhnoye». Dnepropetrovsk, 2015. Vyp. 1. S. 42-45.
10. Bigun S. A., Yevchik V. S., Khorolskiy M. S. O vybore materialov dlya sozdaniya rukavov stykovki system termostatirovania sovremennyh RKN. Kosmicheskaya technika. Raketnoe vooruzhenie. Space technology Missile armaments: sb. nauch.-techn. st. GP «KB «Yuzhnoye». Dnepr, 2018. Vyp. 1. S. 72-84. https://doi.org/10.33136/stma2018.01.072
11. Pat. Ukrainy № 120445, 2019 r., В64G 5/00, В64G 1/40, F16L 37/08, F41F 3/055, F16L 33/00.
12. Pat. Ukrainy № 120469, 2019 r., В64G 5/00, В64G 1/40, F25B 29/00, F16L 33/00,F16L 37/12, F16L 25/00.
13. Khorolskiy M. S., Bigun S. O. Shodo kontseptsii stvorennya vuzliv stykuvannya system termostatuvannya raket kosmichnogo pryznachennya. Systemne proektuvannya i analiz characteristic aerokosmichnoi techniki: zb. nauk. pr. 2019. T. XXVII. S. 162-168.
14. Bigun S. A., Khorolskiy M. S. i dr. Eksperimentalnye issledovania rezultatov otrabotki uzlov stykovki system termostatirovania RKN «Tsiklon-4». Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st./ GP «KB «Yuzhnoye». Dnepropetrovsk, 2016. Vyp. 2. S. 43-51.

Downloads: 39
Abstract views: 
576
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Mountain View; Seattle; San Mateo; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore15
Unknown Canberra; Hong Kong2
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
7.1.2023 Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems
7.1.2023 Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems
7.1.2023 Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>