Search Results for “Kharchenko А. А.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Mon, 17 Jun 2024 12:32:44 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Kharchenko А. А.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge https://journal.yuzhnoye.com/content_2024_1-en/annot_12_1_2024-en/ Mon, 17 Jun 2024 11:36:02 +0000 https://journal.yuzhnoye.com/?page_id=35070
A., Kharchenko N. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. G., Kharchenko N. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge Автори: Nadtoka V. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge Автори: Nadtoka V. Журнал: Космическая техника. Ракетное вооружение. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge Автори: Nadtoka V. Журнал: Космическая техника. Ракетное вооружение. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX Keywords cloud Your browser doesn't support the HTML5 CANVAS tag.
]]>

12. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Ukrainian State University of Science and Technologies2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 102-113

Language: Ukrainian

Annotation: Steel hardening technology is considered, which implies modification of the steel surface with the method of ion-plasma nitriding in glow discharge. Ion-plasma nitriding is a multi-factor process, which requires the study of the influence of nitriding process conditions on the structure of modified layers, which, in its turn, determines their mechanical properties. The subjects of research included: austenitic steel 12X18Н10T, carbon steel Ст3 and structural steel 45. There were two conditions of plasma creation during the research: free location of samples on the surface of the cathode (configuration I) and inside the hollow cathode (configuration II). Optimal parameters of the ion-plasma nitriding process have been determined, which provide stability of the process and create conditions for intensive diffusion of nitrogen into the steel surface. Hydrogen was added to the argon-nitrogen gaseous medium to intensify the nitriding process. Working pressure in the chamber was maintained within the range of 250-300 Pa, the duration of the process was 120 minutes. Comparative characteristics of the structure and microhardness of the modified surfaces of the steels under study for two ion-plasma nitriding technologies are presented. Metallographic examination of the structure of the surface modified layers in the cross section showed the presence of the laminated nitrided layer, which consists of different phases and has different depths, depending on the material of the sample and treatment mode. Nitrided layer of 12Х18Н10Т steel consisted of four sublayers: upper “white” nitride layer, double diffuse layer and lower transition layer. The total depth of the nitrided layer after the specified treatment time reached 23 μm, use of hollow cathode increased it by 26% to 29 μm. The nitrided layers of steel Ст3 and steel 45 consisted of two sublayers – thick “white” nitride layer and general diffuse layer with a thickness of about 18 μm. The microhardness of the nitrided layer of steel Ст3 was 480 HV, increasing by 2,5 times, and for steel 45 was 440 HV, increasing by 1,7 times. The use of hollow cathode for these steels reduces the depth of the nitrided layer, but at the same time the microhardness increases due to the formation of a thicker and denser nitride layer on the surface. The results of the conducted research can be used to strengthen the surfaces of the steel parts in rocket and space technology, applying high-strength coatings.

Key words: ion nitriding, glow discharge, cross-sectional layer structure, hardening, microhardness

Bibliography:

1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49.
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12.
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108.
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52.
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35.
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p.
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283.
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68.
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.

Downloads: 10
Abstract views: 
957
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Phoenix; Ashburn; Des Moines; Boardman5
Ukraine Kyiv; Dnipro2
Finland Helsinki1
Singapore Singapore1
Netherlands Amsterdam1
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
9.1.2020 Experimental investigation of a liner-free propellant tank made from polymer composite materials https://journal.yuzhnoye.com/content_2020_1-en/annot_9_1_2020-en/ Wed, 13 Sep 2023 10:43:08 +0000 https://journal.yuzhnoye.com/?page_id=31035
Experimental investigation of a liner-free propellant tank made from polymer composite materials Authors: Sidoruk А. , Kharchenko V. I., Kharchenko V. I., Kharchenko V. I., Kharchenko V. Ракетное вооружение. I., Kharchenko V. Experimental investigation of a liner-free propellant tank made from polymer composite materials Автори: Sidoruk А. А., Zadoia А. I., Kharchenko V. Журнал: Космическая техника. Ракетное вооружение. Experimental investigation of a liner-free propellant tank made from polymer composite materials Автори: Sidoruk А. А., Zadoia А. I., Kharchenko V. Журнал: Космическая техника. Ракетное вооружение. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX Keywords cloud Your browser doesn't support the HTML5 CANVAS tag.
]]>

9. Experimental investigation of a liner-free propellant tank made from polymer composite materials

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 90-98

DOI: https://doi.org/10.33136/stma2020.01.090

Language: Russian

Annotation: The exploratory and experimental investigations were conducted into design of propellant tank made of composite polymer materials for work in cryogenic environment at operating pressure of 7.5 kgf/cm2 . When determining the configuration of a liner-free composite propellant tank, the main requirement was ensuring its leak-tightness at internal excess pressure and cryogenic temperature effect. The world experience of creating similar designs was analyzed and the requirements were defined imposed on configuration of propellant tank load-bearing shells. Before defining the final configuration, the types of materials, reinforcing patterns, and possible ways to ensure leak-tightness were analyzed, and preliminary tests were conducted of physical and mechanical characteristics of thin-wall samples of composite materials and tubular structures with different reinforcing patterns. The tests of carbon plastic samples were conducted at different curing modes to determine the most effective one from the viewpoint of strength characteristics and the tests for permeability by method of mouthpiece were conducted. The tests of pilot propellant tank showed that the calculated values of deformations and displacements differ from the experimental values by no more than 10 %. Using the parameters measurement results from the tests on liquid nitrogen, the empirical formulas were obtained to calculate linear thermal expansion coefficient of the package of materials of load -bearing shell. The empirical dependences were constructed of relative ring deformations at load-bearing shell middle section on pressure and temperature. The tests confirmed correctness of adopted solutions to ensure strength and leak-tightness of propellant tank load-bearing shell at combined effect on internal excess pressure and cryogenic temperature, particularly at cyclic loading. The materials used and propellant tank manufacturing technologies ensure leak-tightness of load-bearing shell at liquid nitrogen operating pressure of 7.5 kgf/cm2 and strength at excess pressure of 15 kgf/cm2 and allow conducting approbation of prospective stage of the integrated launch vehicle.

Key words: load-bearing shell, permeability, cryogenic propellant, relative deformations, linear thermal expansion coefficient

Bibliography:
1. Frantsevich I. М., Karpinos D. М. Kompozitsionnye materialy voloknistogo stroeniia. K., 1970.
2. TSM YZH ANL 009 00. Composite fuel tank for ILV, Dnipro, Yuzhnoye SDO, 2019.
3. Zheng H., Zeng X., Zhang J., Sun H. The application of carbon fiber composites in cryotank. Solidification. 2018. https://doi.org/10.5772/intechopen.73127
Downloads: 30
Abstract views: 
1562
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Los Angeles; North Bergen; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman17
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro; Odessa2
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials

Keywords cloud

]]>
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems https://journal.yuzhnoye.com/content_2018_1-en/annot_11_1_2018-en/ Tue, 05 Sep 2023 06:50:56 +0000 https://journal.yuzhnoye.com/?page_id=30466
2 , Kharchenko А. О., Kharchenko А. V., Kharchenko А. V., Kharchenko А. V., Kharchenko А. V., Kharchenko А. V., Kharchenko А. V., Kharchenko А.
]]>

11. Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Kharkiv Aviation Institute, Kharkiv, Ukraine2 .

Page: Kosm. teh. Raket. vooruž. 2018 (1); 63-68

DOI: https://doi.org/10.33136/stma2018.01.063

Language: Russian

Annotation: Several measures to ensure long service life of electrochemical batteries are proposed: electrochemical battery performance evaluation, study of theoretical basis for improvement and building of experimental bench equipment.

Key words:

Bibliography:
1. Davidov А. О. Development of Technique of Alkaline Nickel-Cadmium Accumulators Recovery to Prolong their Service Life. Aerospace Hardware and Technology. 2009. No. 8 (65). P. 132-137.
2. Bezruchko K. V., Vasilenko A. S., Davidov A. О., Kharchenko А. А. Recovery of Open-Type Nickel-Cadmium Accumulators Capacity by Acting on Active Mass of Oxide-Nickel Electrode. Problems and Chemistry and Chemical Technology. 2002. No. 2. P. 66-70.
3. Azarnov A. L. et al. Express-Diagnostics Technique for Electrochemical Accumulators. The ХII International Scientific-Practical Youth Conference “Man and Space”: Collection of abstracts. Dnepropetrovsk, 2010. P. 78.
4. Bezruchko K. V., Davidov A. O. Express-Diagnostics Method for Electrochemical Energy Storage Units of Space Rocketry Power Systems. Space Technologies: Present and Future: The III International Conference: Collection of Abstracts (Dnepropetrovsk, 20-22 April, 2011). Dnepropetrovsk, 2011. P. 5-6.
5. Bezruchko K. V., Davidov A. O., Sinchenko S. V. Pulse Diagnostics Method for Nickel-Cadmium Accumulators. The V Scientific–Technical Conference “Present-Day Problems of Space Rocketry and Space Technologies”: Collection of abstracts. Kharkiv, 2010. P. 13.
6. Bezruchko K. V., Davidov A. O., Katorgina J. G., Sinchenko S. V., Shirinsky S. V. Method of Predicting the Performance of Electrochemical Batteries Working during Long Time in Space Rocketry Power Systems. Electrical and Electronic Engineering. 2013. Vol. 3 (3). P. 81-85.
7. Bezruchko K. V. et al. Development and Approbation of Mathematical Model to Predict the Characteristics of Electrochemical Accumulators of Space Rocketry Power Systems. MAI News. 2013, Vol. 20, No. 1. P. 38-49.
Downloads: 31
Abstract views: 
776
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Dnipro2
Unknown1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems
]]>
7.2.2016 Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher https://journal.yuzhnoye.com/content_2016_2-en/annot_7_2_2016-en/ Tue, 06 Jun 2023 11:54:33 +0000 https://journal.yuzhnoye.com/?page_id=28314
2 , Kharchenko А. I., Kharchenko А. I., Kharchenko А. I., Kharchenko А. I., Kharchenko А. I., Kharchenko А. I., Kharchenko А.
]]>

7. Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Kharkiv Aviation Institute, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2016 (2); 52-56

Language: Russian

Annotation: It also contains the description of generalized mathematical model which can be used for selection of a specific type of chemical current sources for the self-contained power supply system of self-propelled launcher.

Key words:

Bibliography:
Downloads: 28
Abstract views: 
353
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Columbus; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Seattle; Portland; Des Moines; Des Moines; Boardman; Ashburn; Boardman18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Romania Voluntari1
7.2.2016 Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher
7.2.2016 Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher
7.2.2016 Analysis of Operation Modes and Selection of Chemical Current Source Included in Autonomous Electric Power Supply Systems of Self-Propelled Launcher
]]>