Search Results for “Khorolskiy P. G.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 21:17:59 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Khorolskiy P. G.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING https://journal.yuzhnoye.com/content_2024_1-en/annot_10_1_2024-en/ Mon, 17 Jun 2024 08:44:04 +0000 https://journal.yuzhnoye.com/?page_id=35018
, Khorolskiy P. Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. Content 2024 (1) Downloads: 21 Abstract views: 880 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA San Jose; San Francisco; Clearwater; Chicago; Los Angeles; Ashburn; Buffalo; Los Angeles; Portland; 10 Germany Falkenstein; Düsseldorf;; Falkenstein 4 Singapore Singapore; Singapore 2 Ukraine Uzhhorod; Kremenchuk 2 France 1 Unknown 1 China Shenzhen 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Borscheva O. V., Khorolskiy P. V., Khorolskiy P. V., Khorolskiy P. V., Khorolskiy P. V., Khorolskiy P. V., Khorolskiy P.
]]>

10. Method of autonomous determination of the rocket’s reference attitude during pre-launch processing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 85-92

DOI: https://doi.org/10.33136/stma2024.01.085

Language: Ukrainian

Annotation: To solve the navigation tasks (determination of the apparent accelerations and angular velocities and calculation of rocket orientation angles) in the rocket engineering, the data from the sensing elements (angular velocity sensors and accelerometers) is used. Accuracy of reference attitude determination of the rocket in the steady mode (at lift-off) has great influence on accuracy of the received navigation data during the flight. Gimballess inertial navigation system, built on the basis of inertial MEMS-sensors of Industry class (three angular velocity sensors and three accelerometers), is taken as the navigation device. In the classical version, the integration of data from angular velocity sensors and from accelerometers is the basis of gimballess inertial navigation system operation. It results in accumulation of errors when solving the navigation task (in particular due to the integration of data from angular velocity sensors). Taking it into consideration, the alternative method of rocket’s reference attitude determination during the pre-launch processing is offered. This method does not use mathematical operations of integration and is autonomous. Initial data, received from the gimballess inertial navigation system, is used as the output data. This data is used to determine the rocket’s reference attitude (orientation of object-centered coordinates in the geographical reference system) in the steady mode. Orientation angles are determined without the integration of data picked up from the angular velocity sensors. The comparative analysis to define the processing efficiency of the navigation device initial data was held during the determination of the rocket’s orientation angles in the steady mode, using the proposed method and Runge-Kutta method. The received results showed that accuracy of the reference attitude determination with the proposed method is higher. Thus, the proposed method will help reduce the errors in determination of the rocket’s reference attitude in the steady mode that in the future will improve the accuracy in determination of navigational parameters during the rocket’s flight.

Key words: navigation system, mems-sensors, accelerometers, angular velocity sensors, reference attitude

Bibliography:
  1. Meleshko V.V., Nesterenko O.I. Besplatformennye inertsialnye navigatsionnye systemy. Ucheb. posobie. Kirovograd: POLIMED – Service, 2011. 164 s.
  2. Vlasik S.N., Gerasimov S.V., Zhuravlyov A.A. Matematicheskaya model besplatformennoy inertsialnoy navigatsionnoy systemy i apparatury potrebitelya sputnikovoi navigatsionnoy systemy aeroballisticheskogo apparata. Nauka i technika Povitryannykh Sil Zbroinykh Sil Ukrainy. 2013. № 2(11). s. 166-169.
  3. Waldenmayer G.G. Protsedura pochatkovoi vystavki besplatformennoy inertsialnoy navigatsionoy systemy z vykorystannyam magnitometra ta rozshirennogo filtra Kalmana. Aeronavigatsini systemy. 2012. s. 8.
  4. Korolyov V.M., Luchuk Ye.V., Zaets Ya.G., Korolyova O.I., Miroshnichenko Yu.V. Analiz svitovykh tendentsiy rozvytku system navigatsii dlya sukhoputnykh viysk. Rozroblennya ta modernizatsia OVT. 2011. №1(4). s.19-29. https://doi.org/10.33577/2312-4458.4.2011.19-29
  5. Avrutov V.V., Ryzhkov L.M. Pro alternativniy metod avtonomnogo vyznachennya shyroty i dovgoty rukhomykh obiektiv. Mekhanika gyroskopichnykh system. 2021. №41. s.  122-131. https://doi.org/10.20535/0203-3771412021269255
  6. Bugayov D.V., Avrutov V.V., Nesterenko O.I. Experimentalne porivnyannya algoritmiv vyznachennya orientatsii na bazi complimentarnogo filtru ta filtru Madjvika. Avtomatizatsiya technologichnykh i biznes-protsesiv. 2020. T. 12, №3. s. 10-19.
  7. Chernyak M.G., Kolesnik V.O. Zmenshennya chasovykh pokhibok inertsialnogo vymiryuvalnogo modulya shlyakhom realizatsii yogo strukturnoi nadlyshkovosti na bazi tryvisnykh micromekhanichnykh vymiruvachiv. Mekhanika giroskopichnykh system. 2020. №39. s. 66-80. https://doi.org/10.20535/0203-3771392020229096
  8. Rudik A.V. Matematichna model pokhibok accelerometriv bezplatformenoi inertsialnoi navigatsinoi systemy. Visnyk Vynnitskogo politechnychnogo institutu. 2017. №2. s. 7-13.
  9. Naiko D.A., Shevchuk O.F. Teoriya iomovirnostey ta matematychna statistika: navch. posib. Vinnytsya: VNAU. 2020. 382 s.
  10. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya bezplatformennykh inertsialnykh navigatsionnykh system. SPb.: GNTs RF OAO «Kontsern «TsNII «Electropribor». 2009. 280 s.
  11. Novatorskiy M.A. Algoritmy ta metody obchislen’ [Electronniy resurs]: navch. posib. dlya stud. KPI im. Igorya Sikorskogo. Kiyv: KPI im. Igorya Sikorskogo. 2019. 407 s.
Downloads: 21
Abstract views: 
880
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA San Jose; San Francisco; Clearwater; Chicago; Los Angeles; Ashburn; Buffalo; Los Angeles; Portland;10
Germany Falkenstein; Düsseldorf;; Falkenstein4
Singapore Singapore; Singapore2
Ukraine Uzhhorod; Kremenchuk2
France1
Unknown1
China Shenzhen1
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile https://journal.yuzhnoye.com/content_2019_2-en/annot_1_2_2019-en/ Sat, 16 Sep 2023 21:19:15 +0000 https://journal.yuzhnoye.com/?page_id=28723
, Khorolskiy P. Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. 2019, (2); 3-10 DOI: https://doi.org/10.33136/stma2019.02.003 Language: Russian Annotation: The article is devoted to optimization of a trajectory of the antiaircraft guided missile performed in design phase. The coordinate descent method was used for search for the simplified flight program. The control program selected the angle of attack  program. Key words: anti-aircraft missile , optimization , angle of attack program , trajectory Bibliography: 1. M., Khorolskiy P. M., Khorolskiy P. M., Khorolskiy P. M., Khorolskiy P. M., Khorolskiy P. M., Khorolskiy P. anti-aircraft missile , optimization , angle of attack program , trajectory .
]]>

1. Optimization of the trajectory of the antiaircraft guided missile

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 3-10

DOI: https://doi.org/10.33136/stma2019.02.003

Language: Russian

Annotation: The article is devoted to optimization of a trajectory of the antiaircraft guided missile performed in design phase. The review of existing solutions on this issue confirmed the topicality of the problem. The analytical solution cannot be obtained, therefore, according to modern tendencies, optimization by numerical method of original development was performed. The basis of the method is two-level optimization which is carried out, in turn, by two different numerical methods and for two different criteria functions. At the top level, by method of random search and as a variant, by method of coordinate descent, the search was carried out for a fixed set of intermediate for the specified flight range trajectory points which co-ordinates in aggregate provide the necessary optimum. At the bottom level, for each pair of consecutive intermediate points, the boundary problem of falling into distant point by one-dimensional optimization was solved. The coordinate descent method was used for search for the simplified flight program. As optimization criteria for top level, minimum flight time or maximum final speed, for bottom  terminal criterion were used. The control program selected the angle of attack  program. As a result, the optimum and suboptimum (additionally ensuring minimum calculation time) trajectories and flight programs to maximum range and different altitudes were obtained. The analysis of results showed practical proximity of trajectories of minimum flight time and maximum final speed.

Key words: anti-aircraft missile, optimization, angle of attack program, trajectory

Bibliography:
1. Letov A. M. Dynamika poleta i upravlenie. M., 1969. 360 s.
2. Ushan’ V. N. Metod synteza optymalnykh traektoriy dlya vyvoda dynamicheskykh obiektov v zadannuyu tochku. Systemy obrobky informatsii. 2014. № 1 (117). S. 67-71.
3. Zarubinskaya A. L. Optimalnoe upravlenie dvizheniem letatelnykh apparatov v atmosfere ot starta do tochek vstrechi. Technicheskaya mekhanika. 1997. № 5. S. 23-28.
4. Grabchak V. I. Osnovni aspekty opysu zadachi pro optimalnu shvidkodiu keruvanny rukhom rakety. Systemy ozbroyennya i viyskova tekhnika. 2014. № 4(40). S. 13-20.
5. Shaw Y. Ong. Optimal Planar Evasive Aircraft Maneuvers Against Proportional Navigation Missiles. Journal of guidance, control and dynamics. 1996. Vol. 19, № 6. Р. 1210-1215. https://doi.org/10.2514/3.21773
6. Renjith R. Kumar. Near-Optimal Three-Dimensional Air-to-Air Missile Guidance Against Maneuvering Target. Journal of guidance, control and dynamics. 1995. Vol. 18, № 3. Р. 457-464. https://doi.org/10.2514/3.21409
7. Paul J. Enright. Conway Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming. Journal of guidance, control, and dynamics. 1992. Vol. 15, № 4. Р. 994-1002. https://doi.org/10.2514/3.20934
8. Craig A. Phillips. Trajectory Optimization for a Missile Using a Multitier Approach. Journal of Spacecraft and Rockets. 2000. Vol. 37, № 5. Р. 653-662. https://doi.org/10.2514/2.3614
9. Lebedev A. A., Gerasyuta N. F. Ballistila raket. M., 1970. 244 s.
10. Proektirovanie zenitnykh upravlyaemykh raket / I. I. Arkhangelskiy i dr.; pod red. I. S. Golubeva i V. G. Svetlova. M., 2001. 732 s.
11. Drakin I. I. Osnovy proektirovania letatelnykh apparatov s uchetom ekonomicheskoy effektivnosti. M., 1973. 224 s.
12. Beiko I. V., Bublik B. N., Zinko P. N. Metody i algoritmy resheniya zadach optimizatsii. K., 1983. 512 s.
13. Krinetskiy Ye. I. Systemy samonavedeniya. M., 1970. 236 s.
Downloads: 52
Abstract views: 
1972
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore;; Boydton; Plano; Dublin; Ashburn; Columbus; Los Angeles; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Boardman; Seattle; Seattle; Portland; San Mateo; San Mateo; San Mateo; Columbus; Des Moines; Des Moines; Boardman; Boardman; Ashburn33
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Ukraine Odessa; Dnipro2
Finland Helsinki1
Unknown Hong Kong1
Canada Monreale1
Türkiye Istanbul1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>