Search Results for “Klimenko D. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Fri, 17 May 2024 12:02:16 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Klimenko D. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 11.1.2020 Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies https://journal.yuzhnoye.com/content_2020_1-en/annot_11_1_2020-en/ Wed, 13 Sep 2023 10:51:08 +0000 https://journal.yuzhnoye.com/?page_id=31040
Akimov D. F., Klimenko D. Akimov D. F., Klimenko D. Akimov D. F., Klimenko D. Teoreticheskie osnovy metodov kompiuternogo modelirovaniia: ucheb.-metod. Metod konechnykh elementov v nelineinykh zadachakh inzhenernoi mekhaniki. Akimov D. I., Klimenko D. Akimov D. F., Klimenko D. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. Akimov D. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. G., Akimov D. URL: http://datareview.info/article/vse-modeli-mashinnogo-obucheniya-imeyut-svoi-nedostatki 16. Vykorystannia mashynnoho navchannia dlia prohnozuvannia napruzheno-deformovannoho stanu kvadratnoi plastyny. Matematychne modeliuvannia fizychnykh I tekhnolohichnykh system.
]]>

11. Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Organization:

Zaporizhzhia National University, Zaporizhzhia, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 107-113

DOI: https://doi.org/10.33136/stma2020.01.107

Language: Russian

Annotation: This article analyzes the results of studies, which are based on numerical methods of analysis, of the stress-strain state of thin-walled shell structures. This article also discusses analytical solutions that apply asymptotic approaches and a method of initial parameters in a matrix form for solving a problem of equal stability of reinforced compartments of combined shell systems of the rocket and space technology within the scope of the research being carried out jointly by teams of Yuzhnoye State Design Office and Zaporizhzhya National University. The primary attention is paid to the use of FEM-based direct numerical methods and the research results for which analytical methods can be useful for making a preliminary assessment of the bearing capacity of load-bearing structures, and in some cases for their rational design. This article does not contrast numerical and analytical approaches but about the possibility of using them effectively. The article talks about possible ways of using the up-to-date technique of machine learning (Machine Learning Technology) in the calculation and experimental methods for determining the characteristics of the rocket and space technology.

Key words: numerical and analytical methods, stress-strain state, rocket structures, shell system, reinforcing load-bearing elements, local and general stability, machine learning technology

Bibliography:
1. Jean-Jacques Rousseau. URL: https://www.sdamesse.ru/2019/03/blog-post_14.html.
2. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Grebenyk S. N., Lisniak А. А., Choporov S. V., Larionov I. F., Klimenko D. V., Sirenko V. N. Matematicheskoe modelirovanie i issledovanie prochnosti silovykh elementov konstruktsij kosmicheskikh letatelnykh apparatov. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2015. № 3. S. 6–13.
3. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Finite-element analysis and experimental investigation on the strength of a three-layered honeycomb sandwich structure of spacecraft adapter module. Strength of Materials. 2016. № 3. P. 52–57. https://doi.org/10.1007/s11223-016-9775-y
4. Akimov D. V., Larionov I. F., Klimenko D. V., Gristchak V. Z., Gomenjuk S. I. Matematicheskoe modelirovanie i issledovanie napriazhenno-deformirovannogo sostoianiia otsekov raket kosmicheskogo naznacheniia. Kosmicheskaya tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. GP «KB «Yuzhnoye». Dnipro, 2019. Vyp. 1. S. 21–27. https://doi.org/10.33136/stma2019.01.021
5. Yarevskii Ye. А. Teoreticheskie osnovy metodov kompiuternogo modelirovaniia: ucheb.-metod. posobie. Sankt-Peterburg, 2010. 83 S.
6. Klovanich S. F. Metod konechnykh elementov v nelineinykh zadachakh inzhenernoi mekhaniki. Zaporozhie, 2009. 394 S.
7. Akimov D. V., Gristchak V. Z., Larionov I. F., Gomenjuk S. I., Klimenko D. V., Choporov S. V., Grebenyk S. N. Matematicheskoe obespechenie analiza prochnosti silovykh elementov raketno-kosmicheskoi techniki. Problemy obchysliuvalnoi mekhaniky i mitsnosti konstruktsii: zb. nayk. prats. 2017. Vyp. 26. S. 5–21.
8. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Eksperimentalnoe issledovanie deformirovannogo sostoianiia i prochnosti mezhstupenchatogo otseka raketonositelia pri staticheskom vneshnem nagruzhenii. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. №1. S. 82–89.
9. Akimov D. V., Gristchak V. Z., Grebenyk S. N., Gomenjuk S. I. Sravnitelnyi analiz metodik rascheta napriazhenno-deformirovannogo sostoianiia elementov konstruktsii raketonositelia. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. № 2. S. 116–120.
10. Gristchak V. Z., Gomeniuk S. I., Grebeniuk S. N., Larionov I. F., Degtiarenko P. G., Akimov D. V. An Investigation of a Spacecraft’s Propellant Tanks Shells Bearing Strength. Aviation in XXI-st Century. Safety in Aviation and Space Technologies: Proccedings the Sixth world congress. Kiev, 2014. Vol. 1. Р. 1.14.49–1.14.51.
11. Gristchak V. Z., Manievich А. I. Vliianiie zhestkosti shpangoutov na izgib iz ploskosti na ustoichivost podkreplennoi tsilindricheskoi obolochki. Gidroaeromechanika i teoriia uprugosti. 1972. Vyp. 14. S. 121–130.
12. Gristchak V. Z., Diachenko N. M. Opredelenie oblastei ustoichivosti konicheskoi obolochki pri kombinirovanom nagruzhenii na baze gibridnogo asimptoticheskogo podkhoda. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2017. №2. S. 32–46. URL: http:// nbuv.gov.ua/UJRN/Vznu_mat_2017_2_6.
13. Dehtiarenko P. H., Gristchak V. Z., Gristchak D. D., Diachenko N. M. K probleme ravnoustojchivosti podkreplenoi obolochechnoi konstruktsii pri kombinirovannom nagruzhenii. Kosmicheskaia nauka I technologiia. 2019. Т. 25, № 6(121). S. 3–14.
14. Kononiuk А. Е. Fundamentalnaia teoriia oblachnykh technologij: v 18 kn. Kyiv, 2018. Kn. 1. 620 s.
15. URL: http://datareview.info/article/vse-modeli-mashinnogo-obucheniya-imeyut-svoi-nedostatki
16. Choporova О. V., Choporov S. V., Lysniak А. О. Vykorystannia mashynnoho navchannia dlia prohnozuvannia napruzheno-deformovannoho stanu kvadratnoi plastyny. Matematychne modeliuvannia fizychnykh I tekhnolohichnykh system. Visnyk KhNTU. 2019. № 2(69). S. 192–201.
Downloads: 44
Abstract views: 
1332
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Dublin; Columbus; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Mountain View; Seattle; Portland; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Ashburn; Boardman; Ashburn; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Ukraine Dnipro; Kyiv2
Finland Helsinki1
Unknown1
Pakistan Bahawalpur1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Keywords cloud

]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
1 , Klimenko D. Yu., Ivlev D. Advances in Appl. Trudy v 4-kh t. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Problemy mekhaniki deformiruemogo tverdogo tela. N., Klimenko D. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. Mekhanika tverdogo tela. S., Lebedev A. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. L., Klimenko D. S., Klimenko D. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. M., Klimenko D. M., Klimenko D. M., Klimenko D. M., Klimenko D. M., Klimenko D. M., Klimenko D.
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 45
Abstract views: 
2599
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; North Bergen; Boydton; Plano; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
Ukraine Odessa; Dnipro2
Finland Helsinki1
Ethiopia Addis Ababa1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
3.1.2017 Development Strength Test of Modified Antares ILV https://journal.yuzhnoye.com/content_2017_1/annot_3_1_2017-en/ Thu, 22 Jun 2023 12:48:29 +0000 https://journal.yuzhnoye.com/?page_id=29366
Development Strength Test of Modified Antares ILV Authors: Klimenko D. Development Strength Test of Modified Antares ILV Автори: Klimenko D. Development Strength Test of Modified Antares ILV Автори: Klimenko D. Development Strength Test of Modified Antares ILV Автори: Klimenko D. Development Strength Test of Modified Antares ILV Автори: Klimenko D.
]]>

3. Development Strength Test of Modified Antares ILV

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; DPHZ-DKAU, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2017 (1); 18-22

Language: Russian

Annotation: The methodology and the results of strength tests of Antares ILV modified bay and case joint are presented. The data are given on tested assemblies loading schemes, loading sequence, methods of loads realization, and applied test equipment.

Key words:

Bibliography:
Downloads: 42
Abstract views: 
453
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Ashburn; Phoenix; Monroe; Ashburn; Seattle; Seattle; Columbus; Ashburn; Boardman; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn; Boardman23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore11
Ukraine Dnipro; Dnipro2
Canada Toronto; Monreale2
Unknown Melbourne1
Finland Helsinki1
Germany Falkenstein1
Romania Voluntari1
3.1.2017 Development Strength Test of Modified Antares ILV
3.1.2017 Development Strength Test of Modified Antares ILV
3.1.2017 Development Strength Test of Modified Antares ILV
]]>
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime https://journal.yuzhnoye.com/content_2019_1-en/annot_5_1_2019-en/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27710
2 , Klimenko D. S., Klimenko D. N., Klimenko D. Klimenko, V. M., Klimenko D. M., Klimenko D. M., Klimenko D. M., Klimenko D. M., Klimenko D. M., Klimenko D.
]]>

5. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Language: Russian

Annotation: This article contains results of methodology and standards development for life prediction of launch site structures to launch various types’ launch vehicles into near-earth orbit. Launch sites have been built in various countries of the world (European Union, India, China, Korea, Russia, USA, Ukraine, France, Japan, etc.). In different countries they have their own characteristics, depending on the type and performance of the launch vehicles, infrastructure features (geography of the site, nomenclature of the space objects, development level of rocket and space technology), problems that are solved during launches, etc. Solution of various issues, arising in the process of development of the standards for justification of launch site life is associated with the requirement to consider complex problems of strength and life of nonuniform structural elements of launch sites and structures of rocket and space technology. Launch sites are the combination of technologically and functionally interconnected mobile and fixed hardware, controls and facilities, designed to support and carry out all types of operations with integrated launch vehicles. Launch pad, consisting of the support frame, flue duct lining and embedded elements for frame mounting, is one of the principal components of the launcher and to a large extent defines the life of the launch site. Main achievements of Ukrainian scientists in the field of strength and life are specified, taking into account the specifics of various branches of technology. It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Main methodological steps of launch site structures life prediction are defined. Service limit of launch site is suggested to be the critical time or the number of cycles (launches) over this period, after which the specified limiting states are achieved in the dangerous areas of the load-bearing elements: critical cracks, destruction, formation of unacceptable plastic deformations, buckling failure, corrosion propagation, etc. Classification of loads acting on the launch sites is given. The useful life of launch site is associated with estimation of the number of launches. Concept of low and multiple-cycle fatigue is used. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.

Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur

Bibliography:

1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.

Downloads: 48
Abstract views: 
816
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Springfield; Matawan; North Bergen; Plano; Miami; Miami; Miami; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Canada Toronto; Toronto; Monreale3
Unknown Hong Kong;2
Finland Helsinki1
India1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Keywords cloud

]]>
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays https://journal.yuzhnoye.com/content_2019_1-en/annot_4_1_2019-en/ Thu, 25 May 2023 12:09:18 +0000 https://journal.yuzhnoye.com/?page_id=27709
Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays Authors: Akimov D. 1 , Klimenko D. Mechanika deformiruemogo tverdogo tela. M.: Institut kosmicheskykh issledovaniy RAN, 2009. F., Klimenko D. Akimov D. F., Klimenko D. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays Автори: Akimov D. F., Klimenko D. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays Автори: Akimov D. F., Klimenko D. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays Автори: Akimov D. F., Klimenko D. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays Автори: Akimov D. F., Klimenko D.
]]>

4. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Zaporizhzhia National University, Zaporizhzhia, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 21-27

DOI: https://doi.org/10.33136/stma2019.01.021

Language: Russian

Annotation: This paper presents the overview and features of the stress-strain state analysis of the multilayer shell structures widely used in the design of the missile compartments. As a result of analysis of the current situation with the stress-strain state studies of the complex configuration shell structures and mathematical support of the load-bearing capacity calculation of the aerospace structures, the following actual research trends can be singled out: 1) improvement of the methods of analytical estimation of the thin-walled structures’ strength and resistance; 2) improvement of the numerical methods of composite materials mechanical properties analysis; 3) development or application of the existing software packages and ADE-systems, automatizing stress-strain state analysis with visualization of the processes under study. One of the most important steps of the third research trend is development of the initial data input media (setting the model parameters) and presentation of analysis results with account of the user interface visualization. The description of the mathematical simulation and experimental studies of the stress-strain state of the interstage bay made of carbon fiber sandwich structure is presented and short description of the structure condition after the tests is provided. Based on the analysis it can be concluded that development of the geometric simulation methods, taking into account the manufacturing deviations, is an independent problem from the point of view of practical applications in the aerospace technology.

Key words: sandwich structure, interstage bay, finite-element model, manufacturing deviations, test loads

Bibliography:

1. Vorovich I. I., Shlenev M. A. Plastiny I obolochki // Itogi nauki. Mechanika: Sbornik obzorov. M.: Nauka, 1963. P. 91–176.
2. Grigolyuk E. I., Kogan F. A. Sovremennoe sostoyanie teorii mnogosloynykh obolochek/ Prikladnaya mechanika. 972. T. 8, № 6. P. 3–17.
3. Grigolyuk E. I., Kulikov G.M. Razvitie obschego napravlenia v teorii mnogo – р max=630…651 kg/cm2/ Kosmicheskay technika. Raketnoe vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 27 sloinykh obolochek/ Mechanika compositnykh materialov. 1972. T. 8, № 6. P. 3–17.
4. Grigorenko Ya. M., Vasilenko A. T., Pankratova N. D. K otsenke dopuscheniy teorii trekhsloinykh obolochek s zapolnitelem // Prikladnaya mechanika. 1984. T. 20, № 5. P. 19–25.
5. Dudchenko A. A., Lurie S. A., Obraztsov I. F. Anizotropnye mnogosloynye plastiny I obolochki / Itogi nauki I techniki. Mechanika deformiruemogo tverdogo tela. T. 15. M.: VINITI, 1983. P. 3–68.
6. Kurshin L. M. Obzor rabot po raschetu trekhsloynykh plastin I obolochek / Raschet prostranstvennykh konstruktsiy. Vyp. 1. M.: Gosstroyizdat, 1962. P. 163–192.
7. Noor A. K., Burton W. S., Bert C. W. Computational Models for Sandwich Panels and Shells / Applied Mechanics Reviews. 1996. Vol. 49, No 3. P. 155–199.
8. Piskunov V. G., Rasskazov A. O. Razvitie teorii cloistykh plastin I obolochek // Prikladnaya mechanika. 2002. T. 38, № 2. P. 22–56.
9. Grigorenko Ya. M., Budak V. D., Grigorenko O. Ya. Rozvyazannya zadach teorii bolonok na osnovi disrento –continualnykh metodiv: Navch. posib. Mykolaiv: Ilion, 2010. 294 p.
10. Carrera Е., Brischetto S. A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates // Applied Mechanics Reviews. 2009. Vol. 62, No 1. P. 1–17.
11. Grigolyuk E. I. Uravnenia trekhsloinykh obolochek s legkim zapolnitelem // Izv. AN SSSR. Otdelenie tekhnicheskikh nauk. 1957. № 1. P. 77–84.
12. Ambartsumyan S. A. Teoria anizotropnykh plastin: Prochnost’, ustoichivost’ i kolebania. M.: Nauka, 1987. 360 p.
13. Carrera Е. Historical review of Zig-Zag theories for multilayered plates and shells / Applied Mechanics Reviews. 2003. Vol. 56, No 3. P. 287–308.
14. Teichman F. K., Wang C.-T. Finite deflections of Curved Sandwich Cylinders. Sherman M. Fairchild Publ. Fund. Inst. Aero. Sci. Paper FF-4. Institute of the Astronautical Sciences, 1951. P. 14.
15. Teichman F. K., Wang C.-T., Gerard G. Buckling of Sandwich Cylinders under Axial Compression / Journal of the Aeronautical Sciences. 1951. Vol. 18, No 6. P. 398–406.
16. Vinson J. R. Sandwich Structures / Applied Mechanics Reviews. 2001. Vol. 54, No 4. P. 201–214.
17. Lin J., Fei Y., Zhihua W., Longmao Z. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading / Latin American Journal of Solids and Structures. 2013. Vol. 10. P. 631–645.
18. Wu J., Pan L. Nonlinear theory of multilayer sandwich shells and its application (I) – general theory // Applied Mathematics and Mechanics. 1997. Vol. 18, No 1. P. 19–27.
19. Xu J., Wang C., Liu R. Nonlinear stability of truncated shallow conical sandwich shell with variable thickness / Applied Mathematics and Mechanics. 2000. Vol. 21, No 9. P. 977–986.
20. Komissarova G. L., Klyuchnikova V. G., Nikitenko V. N. K otsenke predelov primenimosti priblizhennykh teoriy sloistykh plastin// Prikladnaya mechanika. 1979. T. 15, № 6. P. 131–134.
21. Khalili S. M. R., Kheirikhah M. M., Malekzadeh Fard K. Buckling analysis of composite sandwich plates with flexible core using improved high-order theory / Mechanics of Advanced Materials and Structures. 2015. Vol. 22, No 4. P. 233–247.
22. Kien T. N., Tai H. T., Thuc P. V. A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates / Steel and Composite Structures. 2015. Vol. 18, No 1. P. 91–120.
23. Gorshkov A. G., Starovoitov E. I., Yarovaya A. V. Mechanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsiy. М.: Fizmatlit, 2005. 576 p.
24. Chumachenko Ye. N., Polyakova T. V., Aksenov A. S. i dr. Matematicheskoe modelirovanie v nelineinoy mechanike: Obzor programmnykh complexov dlya resheniya zadach modelirovania slozhnykh system, Pr-2155. M.: Institut kosmicheskykh issledovaniy RAN, 2009. 44 p.
25. Opyt i novye tekhnologii inzhenernogo analiza v interesakh kosmosa: press-reliz / I. Novikov / GNKTs im. M. V. Khrunicheva. Rezhim dostupa: www.khrunichev.ru/ main.php?id=18mid=2132.

Downloads: 43
Abstract views: 
1034
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; North Bergen; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown Brisbane;;3
Canada; Toronto; Monreale3
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Netherlands Amsterdam; Amsterdam2
Finland Helsinki1
Romania Voluntari1
Ukraine Dnipro1
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse https://journal.yuzhnoye.com/content_2019_2-en/annot_4_2_2019-en/ Mon, 15 May 2023 15:45:37 +0000 https://journal.yuzhnoye.com/?page_id=27206
Vasidzu K. Variatsionnye metody v teorii uprugosti i plastichnosti / per. Mekhanika tverdogo tela. Konechnoelementniy analiz ploskodeformiruemukh sred s vklyucheniyami. Chislennoye modelirovanie povedeniya ploskodeformiruemykh strukturirivannykh sred na osnove proektsionno-iteratsionnykh ckhem MKE. Dopovidi NAN Ukrainy. Proektsionno-iteratsionnaya modifikatsia metoda lokalnykh variatsiy dlya zadach s kvadratychnym funktsionalom. S., Demenkov A. S., Klimenko D. Otsenka resursa konstruktsiy raketno-kosmicheskoy techniki pri uchete vliyaniya kontsetratov napryazheniy v vide otverstiy. G., Zubchaninov D. Degtyareva. N., Lobodyuk V. B., RudV. S., Lebedev A. and Van Der Biest O.
]]>

4. Numerical simulation of behavior of elastic structures with local stiffening elements

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (2); 25-34

DOI: https://doi.org/10.33136/stma2019.02.025

Language: Russian

Annotation: Availability of different inclusions, stiffenings, discontinuities (holes, voids and flaws) are the factors that cause structural irregularity and are typical for structural elements and buildings from various current technology areas, in particular aerospace technology. They significantly influence the deformation processes and result in stress concentration, which can cause local damages or malconformations and as a result lead to impossibility to further use the structure. Materials used are also heterogeneous in its structure. Inclusions can simulate thin stiffening elements, straps, welded or glue joints. It is necessary to detect the thin inclusions when phase transformations of materials are studied, for example, when martensite structures are formed. Study of the various bodies with inclusions is very important in the powder technology, ceramics, etc., where powder, previously compressed under high pressure, is sintered at high temperatures. Use of surface hardening that increases working efficiency of the structural elements is prospective in many engineering sectors. It is important to develop discrete hardening, implemented through manufacturing schemes of particular type. When discrete hardenings impact on the structural elements mode of deformation is simulated, they can also be considered as inclusions of specific structure. Inclusions can also simulate banding of the ferritic-pearlitic structure in the microstructure, related to the complex preloading under material plastic forming. It is advisable to use numerical methods for studies that are universal and suitable for objects of various shapes, sizes and types of loading. Main numerical methods are finite difference method, boundary element method, variation grid-based method, finite element method, method of local variations. This article features ANSYS – based computer simulation of the aerospace structural element behavior – a rectangular plate with two extended elastic inclusions of different rigidity, simulating elastic heterogeneities of structures and materials.

Key words: finite-element method, strength, inclusions, computer simulation

Bibliography:

1. Brebbia K., Telles J., Wroubell L. Metody granichnykh elementov / per. s angl. M., 1987. 524 s.
2. Vasidzu K. Variatsionnye metody v teorii uprugosti i plastichnosti / per. s angl. M., 1987. 544 s.
3. Vilchevskaya Ye. N., Korolev I. K., Freidin A. B. O fazovykh prevrasheniyakh v oblasti neodnorodnosti materiala. Ch. 2: Vzaimideistvie treschiny s vklyucheniem, preterpevayushim fazovoe prevraschenie. Izv. RAN. Mekhanika tverdogo tela. 2011. № 5. S. 32–42.
4. Hart E. L. Konechnoelementniy analiz ploskodeformiruemukh sred s vklyucheniyami. Visn. Dnipropetr. un-tu. Ser.: Mekhanika. 2011. Vyp. 15, t. 2. S. 39–47.
5. Hart E. L., Hudramovich V. S. Chislennoye modelirovanie povedeniya ploskodeformiruemykh strukturirivannykh sred na osnove proektsionno-iteratsionnykh ckhem MKE. Matemat. modelirovanie v mekh. deform. tel i konstruktsiy: materialy 24-oy Mezhdunarod. conf. (SPb., Rossiya, 2011). SPb., 2011. T. 11. S. 37–39.
6. Hart E. L., Hudramovich V. S. Chislennoe modelirovanie structurirovannykh sred. Dopovidi NAN Ukrainy. 2012. № 5. S. 49–56.
7. Hart E. L., Hudramovich V. S. Proektsionno-iteratsionnaya modifikatsia metoda lokalnykh variatsiy dlya zadach s kvadratychnym funktsionalom. Prikl. Matematika I mekhanika. 2016. T. 80, № 2. S. 218–230. https://doi.org/10.1016/j.jappmathmech.2016.06.005
8. Hudramovich V. S. Osobennosti neuprugogo povedeniya neodnorodnykh obolochechnykh elementov konstruktsiy. Aktualnye problem mekhaniki: monografia/ za red. M. V. Polyakova. Dnipro, 2018. S. 195–207.
9. Hudramovich V. S., Hart E. L. Konechnoelementniy analiz processa rasseyanogo razrusheniya ploskodeformiruemykh uprugoplastichnykh sred s lokalnymi contsetratami napryazheniy. Uprugost’ I neuprugost’: Materialy Mezhdunarod. nauchn. symp. po problemam mekhaniki deformiruemykh tel, posvyaschennogo 105-letiyu so dnya rozhdeniya A. A. Ilyushina (Moskow, 2016 ). M., 2016. S. 158–161.
10. Hudramovich V. S., Hart E. L., Strunin K. A. Modelirovanie processa deformirovaniya plastiny s uprugimi protyazhonnymi vklyucheniyami na osnove metoda konechnykh elementov. Tekhn. mechanika. 2014. № 2. S. 12–24.
11. Hudramovich V. S., Demenkov A. F., Konyukhov S. N. Nesuschaya sposobnost’ neidealnykh tsilindricheskykh obolochek s uchetom plasticheskykh deformatsiy. Prochnost’ I nadezhnost’ elementov konstruktsiy: sb. nauchn. tr. K., 1982. S. 45–48.
12. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliyanie vyrezov na prochnost’ tsilindrycheskykh otsekov raket-nositeley pri neuprugom deformirovanii materiala. Kosmichna nauka I technologia. 2017. T. 23, № 6. S. 12–20.
13. Hudramovich V. S., Levin V. M., Hart E. L. i dr. Modelirovanie processa deformirovaniya plastinchatykh elementov zherezobetonnykh konstruktsiy teploenergetiki s ispolzovaniem MKE. Techn. mechanika. 2015. № 2. S. 59–70.
14. Hudramovich V. S., Reprintsev A. V., Ryabokon’ S. A., Samarskaya E. V. Otsenka resursa konstruktsiy raketno-kosmicheskoy techniki pri uchete vliyaniya kontsetratov napryazheniy v vide otverstiy. Technicheskaya diagnostika i nerazrushaushiy control. 2016. № 2. S. 28–36.
15. Gultyaev V. I., Zubchaninov V. G., Zubchaninov D. V. Strukturnye izmeneniya stali 45 v processe eyo deformirovaniya. Izv. Tulskogo gos. un-ta. 2005. Vyp. 8. S. 26-29.
16. Zenkevich O., Morgan K. Konechnye elementy i aproximatsia / per. s angl. M., 1986. 318 s.
17. Kashanov A. E. Perspektivy sotrudnichestva NAN Ukrainy, NAN Belarusi i Yuzhnoye SDO dlya resheniya problemnykh voprosov kosmicheskoy otrasli. Raketnaya technika. Novye vozmozhnosti: nauchn.-techn. sborn. / pod red. A. V. Degtyareva. Dnepr, 2019. S. 281–294.
18. Koval’ Y. N., Lobodyuk V. A. Deformatsionnye i relaksatsionnye yavlenia pri prevraschenniyakh martensitnogo typa. K., 2010. 288 s.
19. Lyashenko B. A., Kuzema Y. A., Digahm M. S. Uprochnenie poverkhnosti metallov pokrytiyami diskretnoy struktury s povyshennoy adhezionnoy i cohezionnoy stoykostyu. К., 1984. 57 s.
20. Stern M. B., Rud’ V. D. Mekhanichni ta kompyuterni modeli konsolidatsii granulyuovanykh seredovysh na osnovi poroshkiv metaliv i keramiki pri deformuvanni ta spikanni / za red. V. V. Skorokhoda. Lutsk, RVV LNTU, 2010. 232 s.
21. ANSYS release 18.1 Documentation for ANSYS WORKBENCH: ANSYS Inc.
22. Hart E., Hudramovich V. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance–2012: Proc. of Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). P. 157–164.
23. Hart E., Hudramovich V. Projection-iterative schemes for the realization of the finite-element method in problems of deformation of plates with holes and inclusions. J. Math. Sci. 2014. Vol. 203. № 1. P. 55–69. https://doi.org/10.1007/s10958-014-2090-x
24. Hudramovich V. S. Features of nonlinear deformation and critical states shell structures with geometrical imperfections. Int. Appl. Mech. 2006.Vol. 42, № 12. P. 1323–1355. https://doi.org/10.1007/s10778-006-0204-y
25. Hudramovich V. S., Hart E. L., Ryabokon’ S. A. Elastoplastic deformation of nonhomogeneous plates. J. Eng. Math. 2013. Vol. 78, № 1. P. 181–197. https://doi.org/10.1007/s10665-010-9409-5
26. Hudramovich V. S., Hart E. L., Strunin K. A. Modeling of the behavior plane-deformable elastic media with elongated elliptic and rectangular inclusions. Materials Science. 2017. Vol. 52, № 6. P. 768–774. https://doi.org/10.1007/s11003-017-0020-z
27. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: Procedings Int. Conf. (Helsinki, Finland, 1999). Amsterdam/ New York / Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
28. Olevsky E. A., Maximenko A. and Van Der Biest O. On-line sintering strength of ceramic composites. Int. J. Mech. Sci. 2002. Vol. 44. P. 755–771. https://doi.org/10.1016/S0020-7403(02)00005-X

Downloads: 45
Abstract views: 
589
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; North Bergen; Plano; Columbus; Columbus; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
China Shanghai1
Finland Helsinki1
Unknown1
Pakistan Multan1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Czech Prague1
Ukraine Dnipro1
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
Editorial board https://journal.yuzhnoye.com/editorial-board-en/ Sat, 13 May 2023 17:09:21 +0000 https://journal.yuzhnoye.com/?page_id=27126
PETRUSENKO, Yuzhnoye State Design Office MEMBERS OF THE EDITORIAL BOARD V. KLIMENKO, Candidate of Engineering, Head of Department in the Yuzhnoye State Design Office Kh. SANIN, Doctor of Engineering, Professor, Head of the Rocket and Space and Innovation Technologies Department of the Physics and Technology Faculty at the Oles Honchar Dniper National University V. SIRENKO, Candidate of Engineering, Head of the Design-Theoretical Division of the Yuzhnoye State Design Office V. KHOROSHILOV, Doctor of Engineering, Professor, Chief Research Associate of the Yuzhnoye State Design Office V. SHEKHOVTSOV, Doctor of Engineering, Professor, Academic Advisor of the Yuzhnoye State Design Office Editorial board maintains and supervises the collected articles activities.
]]>
Editorial Board:

EDITOR-IN-CHIEF

M. O. DEGTYAROV, Candidate of Engineering, General Designer of the Yuzhnoye State Design Office

DEPUTY EDITOR-IN-CHIEF

E. G. GLADKIY, Doctor of Engineering, Chief Research Associate of the Yuzhnoye State Design Office

EXECUTIVE EDITOR OF THE EDITORIAL BOARD

L. I. PETRUSENKO, Yuzhnoye State Design Office

MEMBERS OF THE EDITORIAL BOARD

V. P. GORBULIN, Academician of the Ukraine’s National Academy of Sciences, First Vice-President of the Ukraine’s National Academy of Sciences
GRAZIANI FILIPPO, Senior Professor of Astrodynamics at Aerospace Engineering School, La Sapienza University of Roma; President of Group of Astrodynamics for the Use of Space Systems (Italy)
I. O. GUSAROVA, Doctor of Engineering, Chief Research Associate of the Yuzhnoye State Design Office
I. I. DEREVYANKO, Candidate of Engineering, Head of Department in the Yuzhnoye State Design Office
D. V. KLIMENKO, Candidate of Engineering, Head of Department in the Yuzhnoye State Design Office
Kh. V. KOZIS, Candidate of Engineering, Senior Associate
A. I. LOGVINENKO, Candidate of Engineering, Chief Research Associate of the Yuzhnoye State Design Office
G. A. MAIMUR, Candidate of Engineering, Chief Research Associate of the Yuzhnoye State Design Office
S. M. POLUYAN, Head of Division of the Yuzhnoye State Design Office
O. M. POTAPOV, Candidate of Engineering, Head of Division in the Yuzhnoye State Design Office
L. P. POTAPOVICH, Candidate of Engineering, Academic Secretary – Head of Research and Education Center of the Yuzhnoye State Design Office
A. F. SANIN, Doctor of Engineering, Professor, Head of the Rocket and Space and Innovation Technologies Department of the Physics and Technology Faculty at the Oles Honchar Dniper National University
V. M. SIRENKO, Candidate of Engineering, Head of the Design-Theoretical Division of the Yuzhnoye State Design Office
V. S. KHOROSHILOV, Doctor of Engineering, Professor, Chief Research Associate of the Yuzhnoye State Design Office
V. S. SHEKHOVTSOV, Doctor of Engineering, Professor, Academic Advisor of the Yuzhnoye State Design Office

Editorial board maintains and supervises the collected articles activities.

Editorial board
Editorial board
Editorial board
]]>