Search Results for “Larionov I. F.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Thu, 20 Jun 2024 09:22:16 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Larionov I. F.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 11.1.2020 Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies https://journal.yuzhnoye.com/content_2020_1-en/annot_11_1_2020-en/ Wed, 13 Sep 2023 10:51:08 +0000 https://journal.yuzhnoye.com/?page_id=31040
2020, (1); 107-113 DOI: https://doi.org/10.33136/stma2020.01.107 Language: Russian Annotation: This article analyzes the results of studies, which are based on numerical methods of analysis, of the stress-strain state of thin-walled shell structures. This article does not contrast numerical and analytical approaches but about the possibility of using them effectively. The article talks about possible ways of using the up-to-date technique of machine learning (Machine Learning Technology) in the calculation and experimental methods for determining the characteristics of the rocket and space technology. V., Larionov I. Fiz.-mat. I., Larionov I. V., Larionov I. Z., Larionov I. I., Larionov I. N., Larionov I. Fiz.-mat.
]]>

11. Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Organization:

Zaporizhzhia National University, Zaporizhzhia, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 107-113

DOI: https://doi.org/10.33136/stma2020.01.107

Language: Russian

Annotation: This article analyzes the results of studies, which are based on numerical methods of analysis, of the stress-strain state of thin-walled shell structures. This article also discusses analytical solutions that apply asymptotic approaches and a method of initial parameters in a matrix form for solving a problem of equal stability of reinforced compartments of combined shell systems of the rocket and space technology within the scope of the research being carried out jointly by teams of Yuzhnoye State Design Office and Zaporizhzhya National University. The primary attention is paid to the use of FEM-based direct numerical methods and the research results for which analytical methods can be useful for making a preliminary assessment of the bearing capacity of load-bearing structures, and in some cases for their rational design. This article does not contrast numerical and analytical approaches but about the possibility of using them effectively. The article talks about possible ways of using the up-to-date technique of machine learning (Machine Learning Technology) in the calculation and experimental methods for determining the characteristics of the rocket and space technology.

Key words: numerical and analytical methods, stress-strain state, rocket structures, shell system, reinforcing load-bearing elements, local and general stability, machine learning technology

Bibliography:
1. Jean-Jacques Rousseau. URL: https://www.sdamesse.ru/2019/03/blog-post_14.html.
2. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Grebenyk S. N., Lisniak А. А., Choporov S. V., Larionov I. F., Klimenko D. V., Sirenko V. N. Matematicheskoe modelirovanie i issledovanie prochnosti silovykh elementov konstruktsij kosmicheskikh letatelnykh apparatov. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2015. № 3. S. 6–13.
3. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Finite-element analysis and experimental investigation on the strength of a three-layered honeycomb sandwich structure of spacecraft adapter module. Strength of Materials. 2016. № 3. P. 52–57. https://doi.org/10.1007/s11223-016-9775-y
4. Akimov D. V., Larionov I. F., Klimenko D. V., Gristchak V. Z., Gomenjuk S. I. Matematicheskoe modelirovanie i issledovanie napriazhenno-deformirovannogo sostoianiia otsekov raket kosmicheskogo naznacheniia. Kosmicheskaya tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. GP «KB «Yuzhnoye». Dnipro, 2019. Vyp. 1. S. 21–27. https://doi.org/10.33136/stma2019.01.021
5. Yarevskii Ye. А. Teoreticheskie osnovy metodov kompiuternogo modelirovaniia: ucheb.-metod. posobie. Sankt-Peterburg, 2010. 83 S.
6. Klovanich S. F. Metod konechnykh elementov v nelineinykh zadachakh inzhenernoi mekhaniki. Zaporozhie, 2009. 394 S.
7. Akimov D. V., Gristchak V. Z., Larionov I. F., Gomenjuk S. I., Klimenko D. V., Choporov S. V., Grebenyk S. N. Matematicheskoe obespechenie analiza prochnosti silovykh elementov raketno-kosmicheskoi techniki. Problemy obchysliuvalnoi mekhaniky i mitsnosti konstruktsii: zb. nayk. prats. 2017. Vyp. 26. S. 5–21.
8. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Eksperimentalnoe issledovanie deformirovannogo sostoianiia i prochnosti mezhstupenchatogo otseka raketonositelia pri staticheskom vneshnem nagruzhenii. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. №1. S. 82–89.
9. Akimov D. V., Gristchak V. Z., Grebenyk S. N., Gomenjuk S. I. Sravnitelnyi analiz metodik rascheta napriazhenno-deformirovannogo sostoianiia elementov konstruktsii raketonositelia. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. № 2. S. 116–120.
10. Gristchak V. Z., Gomeniuk S. I., Grebeniuk S. N., Larionov I. F., Degtiarenko P. G., Akimov D. V. An Investigation of a Spacecraft’s Propellant Tanks Shells Bearing Strength. Aviation in XXI-st Century. Safety in Aviation and Space Technologies: Proccedings the Sixth world congress. Kiev, 2014. Vol. 1. Р. 1.14.49–1.14.51.
11. Gristchak V. Z., Manievich А. I. Vliianiie zhestkosti shpangoutov na izgib iz ploskosti na ustoichivost podkreplennoi tsilindricheskoi obolochki. Gidroaeromechanika i teoriia uprugosti. 1972. Vyp. 14. S. 121–130.
12. Gristchak V. Z., Diachenko N. M. Opredelenie oblastei ustoichivosti konicheskoi obolochki pri kombinirovanom nagruzhenii na baze gibridnogo asimptoticheskogo podkhoda. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2017. №2. S. 32–46. URL: http:// nbuv.gov.ua/UJRN/Vznu_mat_2017_2_6.
13. Dehtiarenko P. H., Gristchak V. Z., Gristchak D. D., Diachenko N. M. K probleme ravnoustojchivosti podkreplenoi obolochechnoi konstruktsii pri kombinirovannom nagruzhenii. Kosmicheskaia nauka I technologiia. 2019. Т. 25, № 6(121). S. 3–14.
14. Kononiuk А. Е. Fundamentalnaia teoriia oblachnykh technologij: v 18 kn. Kyiv, 2018. Kn. 1. 620 s.
15. URL: http://datareview.info/article/vse-modeli-mashinnogo-obucheniya-imeyut-svoi-nedostatki
16. Choporova О. V., Choporov S. V., Lysniak А. О. Vykorystannia mashynnoho navchannia dlia prohnozuvannia napruzheno-deformovannoho stanu kvadratnoi plastyny. Matematychne modeliuvannia fizychnykh I tekhnolohichnykh system. Visnyk KhNTU. 2019. № 2(69). S. 192–201.
Downloads: 39
Abstract views: 
1257
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Dublin; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Seattle; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Finland Helsinki1
Unknown1
Pakistan Bahawalpur1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Keywords cloud

]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Plastic deformation and limit states of metal shell structures with initial shape imperfections. (Helsinki, Finland, 1999) / S., Larionov I. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. S., Larionov I. A study of creep collapse of a long circular shells under uniform external pressure. shell structures , stress and strain state , structural and technological inhomogeneity , thermomechanical loads , low-cycle and high-cycle fatigue , lifetime .
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 39
Abstract views: 
2483
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; North Bergen; Boydton; Plano; Miami; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Odessa; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
8.1.2017 Initial Imperfection Effect on Loss of Rod Stability under Axial Compression Conditions https://journal.yuzhnoye.com/content_2017_1/annot_8_1_2017-en/ Tue, 27 Jun 2023 12:02:02 +0000 https://journal.yuzhnoye.com/?page_id=29430
2017 (1); 48-58 Language: Russian Annotation: The experimental and theoretical justification is presented for the phenomenon of sudden buckling with dynamic effect at stability loss of a rectilinear rod with real existing imperfections. Selected Tasks and Problems of Materials Strength. Primary Course of Rational Mechanics of Continuous Media / Translation from English. Mechanics of Deformed Solid Body. Larionov I. Synergetics: Instability Hierarchies in Self-Organizing Systems and Devices / Translation from English. Stability of Deformed Systems. Larionov I. Investigation of Local Raising of Shell Structures at Stability Loss of their Bays.
]]>

8. Initial Imperfection Effect on Loss of Rod Stability under Axial Compression Conditions

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 48-58

Language: Russian

Annotation: The experimental and theoretical justification is presented for the phenomenon of sudden buckling with dynamic effect at stability loss of a rectilinear rod with real existing imperfections. The interdependent connection is established between the initial imperfections and buckling intensity in the effect of zero rigidity of an utmost compressed rod at stability loss in the large.

Key words:

Bibliography:
1. Feodos’yev V. I. Selected Tasks and Problems of Materials Strength. М., 1973. 400 p.
2. Trusdell K. Primary Course of Rational Mechanics of Continuous Media / Translation from English. М., 1975. 522 p.
3. Bolotin V. V. Nonconservative Problems of Elastic Stability Theory. М., 1961. 339 p.
4. Rabotnov Y. N. Mechanics of Deformed Solid Body. М., 1979. 744 p.
5. Konyukhov S. N., Mulyar Y. M., Privarnikov Y. K. Investigation of Minor Disturbing Actions on Shell Stability. Applied Mechanics. 1996. Issue 32, No. 9. P. 59-65.
6. Larionov I. F., Mulyar Y. M., Petushenko Y. G. On Physical Substantiation of Spontaneous Change of Initial Shape of Extremely Compressed Launch Vehicle Bays. Cosmonautics and Rocket Building. Kaliningrad, 2001. Issue 24. P. 129–136.
7. Haken G. Synergetics: Instability Hierarchies in Self-Organizing Systems and Devices / Translation from English. М., 1985. 423 p.
8. Volmir A. S. Stability of Deformed Systems. М., 1967. 984 p.
9. Larionov I. F., Mulyar Y. M., Privarnikov Y. K. Investigation of Local Raising of Shell Structures at Stability Loss of their Bays. Cosmonautics and Rocket Building. Kaliningrad, 1998. Issue 13. P. 92–98.
10. Mulyar Y. M., Perlik V. I. On Prediction of Destruction of Extremely Compressed Launch Vehicle Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2010. Issue 2. P. 28–39.
11. Hoff N. Longitudinal Bending and Stability. М., 1955. 154 p.
Downloads: 41
Abstract views: 
423
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore;; Plano; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore12
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Unknown1
Great Britain London1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
8.1.2017 Initial Imperfection Effect on Loss of Rod Stability under Axial Compression Conditions
8.1.2017 Initial Imperfection Effect on Loss of Rod Stability under Axial Compression Conditions
8.1.2017 Initial Imperfection Effect on Loss of Rod Stability under Axial Compression Conditions
]]>
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays https://journal.yuzhnoye.com/content_2019_1-en/annot_4_1_2019-en/ Thu, 25 May 2023 12:09:18 +0000 https://journal.yuzhnoye.com/?page_id=27709
1 , Larionov I. Mechanika deformiruemogo tverdogo tela. A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates // Teichman F. Fairchild Publ. Teichman F. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading / Latin American Journal of Solids and Structures. М.: Fizmatlit, 2005. V., Larionov I. F., Klimenko D. "Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays" Космическая техника. V., Larionov I. F., Klimenko D. quot;Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays", Космическая техника. V., Larionov I. F., Klimenko D. V., Larionov I. F., Klimenko D. V., Larionov I. F., Klimenko D. V., Larionov I. F., Klimenko D.
]]>

4. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Zaporizhzhia National University, Zaporizhzhia, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 21-27

DOI: https://doi.org/10.33136/stma2019.01.021

Language: Russian

Annotation: This paper presents the overview and features of the stress-strain state analysis of the multilayer shell structures widely used in the design of the missile compartments. As a result of analysis of the current situation with the stress-strain state studies of the complex configuration shell structures and mathematical support of the load-bearing capacity calculation of the aerospace structures, the following actual research trends can be singled out: 1) improvement of the methods of analytical estimation of the thin-walled structures’ strength and resistance; 2) improvement of the numerical methods of composite materials mechanical properties analysis; 3) development or application of the existing software packages and ADE-systems, automatizing stress-strain state analysis with visualization of the processes under study. One of the most important steps of the third research trend is development of the initial data input media (setting the model parameters) and presentation of analysis results with account of the user interface visualization. The description of the mathematical simulation and experimental studies of the stress-strain state of the interstage bay made of carbon fiber sandwich structure is presented and short description of the structure condition after the tests is provided. Based on the analysis it can be concluded that development of the geometric simulation methods, taking into account the manufacturing deviations, is an independent problem from the point of view of practical applications in the aerospace technology.

Key words: sandwich structure, interstage bay, finite-element model, manufacturing deviations, test loads

Bibliography:

1. Vorovich I. I., Shlenev M. A. Plastiny I obolochki // Itogi nauki. Mechanika: Sbornik obzorov. M.: Nauka, 1963. P. 91–176.
2. Grigolyuk E. I., Kogan F. A. Sovremennoe sostoyanie teorii mnogosloynykh obolochek/ Prikladnaya mechanika. 972. T. 8, № 6. P. 3–17.
3. Grigolyuk E. I., Kulikov G.M. Razvitie obschego napravlenia v teorii mnogo – р max=630…651 kg/cm2/ Kosmicheskay technika. Raketnoe vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 27 sloinykh obolochek/ Mechanika compositnykh materialov. 1972. T. 8, № 6. P. 3–17.
4. Grigorenko Ya. M., Vasilenko A. T., Pankratova N. D. K otsenke dopuscheniy teorii trekhsloinykh obolochek s zapolnitelem // Prikladnaya mechanika. 1984. T. 20, № 5. P. 19–25.
5. Dudchenko A. A., Lurie S. A., Obraztsov I. F. Anizotropnye mnogosloynye plastiny I obolochki / Itogi nauki I techniki. Mechanika deformiruemogo tverdogo tela. T. 15. M.: VINITI, 1983. P. 3–68.
6. Kurshin L. M. Obzor rabot po raschetu trekhsloynykh plastin I obolochek / Raschet prostranstvennykh konstruktsiy. Vyp. 1. M.: Gosstroyizdat, 1962. P. 163–192.
7. Noor A. K., Burton W. S., Bert C. W. Computational Models for Sandwich Panels and Shells / Applied Mechanics Reviews. 1996. Vol. 49, No 3. P. 155–199.
8. Piskunov V. G., Rasskazov A. O. Razvitie teorii cloistykh plastin I obolochek // Prikladnaya mechanika. 2002. T. 38, № 2. P. 22–56.
9. Grigorenko Ya. M., Budak V. D., Grigorenko O. Ya. Rozvyazannya zadach teorii bolonok na osnovi disrento –continualnykh metodiv: Navch. posib. Mykolaiv: Ilion, 2010. 294 p.
10. Carrera Е., Brischetto S. A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates // Applied Mechanics Reviews. 2009. Vol. 62, No 1. P. 1–17.
11. Grigolyuk E. I. Uravnenia trekhsloinykh obolochek s legkim zapolnitelem // Izv. AN SSSR. Otdelenie tekhnicheskikh nauk. 1957. № 1. P. 77–84.
12. Ambartsumyan S. A. Teoria anizotropnykh plastin: Prochnost’, ustoichivost’ i kolebania. M.: Nauka, 1987. 360 p.
13. Carrera Е. Historical review of Zig-Zag theories for multilayered plates and shells / Applied Mechanics Reviews. 2003. Vol. 56, No 3. P. 287–308.
14. Teichman F. K., Wang C.-T. Finite deflections of Curved Sandwich Cylinders. Sherman M. Fairchild Publ. Fund. Inst. Aero. Sci. Paper FF-4. Institute of the Astronautical Sciences, 1951. P. 14.
15. Teichman F. K., Wang C.-T., Gerard G. Buckling of Sandwich Cylinders under Axial Compression / Journal of the Aeronautical Sciences. 1951. Vol. 18, No 6. P. 398–406.
16. Vinson J. R. Sandwich Structures / Applied Mechanics Reviews. 2001. Vol. 54, No 4. P. 201–214.
17. Lin J., Fei Y., Zhihua W., Longmao Z. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading / Latin American Journal of Solids and Structures. 2013. Vol. 10. P. 631–645.
18. Wu J., Pan L. Nonlinear theory of multilayer sandwich shells and its application (I) – general theory // Applied Mathematics and Mechanics. 1997. Vol. 18, No 1. P. 19–27.
19. Xu J., Wang C., Liu R. Nonlinear stability of truncated shallow conical sandwich shell with variable thickness / Applied Mathematics and Mechanics. 2000. Vol. 21, No 9. P. 977–986.
20. Komissarova G. L., Klyuchnikova V. G., Nikitenko V. N. K otsenke predelov primenimosti priblizhennykh teoriy sloistykh plastin// Prikladnaya mechanika. 1979. T. 15, № 6. P. 131–134.
21. Khalili S. M. R., Kheirikhah M. M., Malekzadeh Fard K. Buckling analysis of composite sandwich plates with flexible core using improved high-order theory / Mechanics of Advanced Materials and Structures. 2015. Vol. 22, No 4. P. 233–247.
22. Kien T. N., Tai H. T., Thuc P. V. A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates / Steel and Composite Structures. 2015. Vol. 18, No 1. P. 91–120.
23. Gorshkov A. G., Starovoitov E. I., Yarovaya A. V. Mechanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsiy. М.: Fizmatlit, 2005. 576 p.
24. Chumachenko Ye. N., Polyakova T. V., Aksenov A. S. i dr. Matematicheskoe modelirovanie v nelineinoy mechanike: Obzor programmnykh complexov dlya resheniya zadach modelirovania slozhnykh system, Pr-2155. M.: Institut kosmicheskykh issledovaniy RAN, 2009. 44 p.
25. Opyt i novye tekhnologii inzhenernogo analiza v interesakh kosmosa: press-reliz / I. Novikov / GNKTs im. M. V. Khrunicheva. Rezhim dostupa: www.khrunichev.ru/ main.php?id=18mid=2132.

Downloads: 40
Abstract views: 
1003
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; North Bergen; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown Brisbane;;3
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Canada; Monreale2
Netherlands Amsterdam; Amsterdam2
Finland Helsinki1
Romania Voluntari1
Ukraine Dnipro1
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>