Search Results for “Levin O. S.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:51:55 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Levin O. S.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing https://journal.yuzhnoye.com/content_2020_1-en/annot_4_1_2020-en/ Wed, 13 Sep 2023 05:51:26 +0000 https://journal.yuzhnoye.com/?page_id=31024
, Levin O. Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. The functional guidance method, in principle, allows achieving the required guidance accuracy (hundreds of meters), however, it requires a reserve of power of the controls at a level 50% to counter the influence of disturbing factors. Counteraction of the lateral displacement is introduced by adjusting the half-periods of flying vehicle movement along the angle of the precession. Development of the iterative guidance mode with is application to varies vehicles and missions. M., Levin O. M., Levin O. M., Levin O. M., Levin O. M., Levin O. M., Levin O. angular motion of flying vehicle; touchdown point , methodological error of guidance , guidance of maneuvering supersonic flying vehicle .
]]>

4. Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 34-43

DOI: https://doi.org/10.33136/stma2020.01.034

Language: Russian

Annotation: High-precision guidance of supersonic flying vehicles maneuvering while descending in the atmosphere with high degree of thermal protection ablation is a well-known problem of space ballistics. The existing methods for calculating the ablation of thermal protection and the subsequent calculation of aerodynamic characteristics lead to scatter of the landing points of a flying vehicle reaching 5 km or more. The functional guidance method, in principle, allows achieving the required guidance accuracy (hundreds of meters), however, it requires a reserve of power of the controls at a level 50% to counter the influence of disturbing factors. The known terminal guidance method, which has recently become widespread, is based on a highly accurate prediction of motion parameters and, in this regard, has little promise. The method has been described in the article that allows 15-20-fold reducing the flight range scatters caused by lack of knowledge (including due to coating ablation) of its current aerodynamic characteristics and ensuring that the accumulated lateral deviation is counteracted in the limit to 1-1.5 km. The method is applicable to the flying vehicles with weight asymmetry (“transverse” displacement of the center of mass), performing maneuvering under conditions of aerodynamic balancing. The method is based on the solution to increase the accuracy of hits by spinning the shells around longitudinal axis. It is proposed that when a flying vehicle moves in the dive mode by means of the onboard CVC, it is regular (at intervals) to calculate its flight path in the (conditionally) autorotation mode. Based on the results of processing single calculations, the corresponding flight ranges of a flying vehicle and the lateral displacement of the touchdown points are determined, the point in time is predicted at which the flight range of the flying vehicle is equal to the specified one and the average lateral deviation is determined. At this moment the angular movement of the flying vehicle is transferred to the autorotation mode. Counteraction of the lateral displacement is introduced by adjusting the half-periods of flying vehicle movement along the angle of the precession. An example of pointing a flying vehicle at a given range, and bringing it to the touchdown point, shifted to the right relative to the original flight path by 1 km. The error of the terminal guidance of a maneuvering while reducing the aircraft using the proposed guidance method is determined.

Key words: angular motion of flying vehicle; touchdown point, methodological error of guidance, guidance of maneuvering supersonic flying vehicle

Bibliography:
1. Eliasberg P. Е. Vvedenie v teoriiu poleta iskusstvennykh sputnikov Zemli. М., 1965. 540 s.
2. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
3. Levin A. S., Mashtak I. V., Sheptun А. D. Dinamika manevrirovaniia v atmosphere LA s vesovoi asimmetriei i elementami terminalnogo upravleniia na uchastke razvorota. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. statei / GP “KB “Yuzhnoye”. Dnipro, 2019. Vyp. 1. S. 4–14. https://doi.org/10.33136/stma2019.01.004
4. Chandler D. C., Smith I. E. Development of the iterative guidance mode with is application to varies vehicles and missions. Journal of Spacecraft and Rockets. 1967. Vol 1.4, №7. P. 898-903. https://doi.org/10.2514/3.28985
Downloads: 39
Abstract views: 
805
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Columbus; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn; Boardman20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown;2
Ukraine Dnipro;2
Finland Helsinki1
Pakistan Lahore1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing

Keywords cloud

]]>
2.1.2019 Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg https://journal.yuzhnoye.com/content_2019_1-en/annot_2_1_2019-en/ Thu, 25 May 2023 12:09:03 +0000 https://journal.yuzhnoye.com/?page_id=27707
Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg Authors: Levin O. Content 2019 (1) Downloads: 46 Abstract views: 597 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Matawan; Baltimore; Plano; Ashburn; Columbus; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Boydton; Boydton; Portland; San Mateo; San Mateo; San Mateo; Boydton; Boydton; Boydton; Boydton; Boydton; Boydton; Des Moines; Boardman; Boardman; Ashburn 29 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 8 China Shanghai 1 Belgium Brussels 1 Finland Helsinki 1 Unknown 1 Canada Monreale 1 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Levin O.
]]>

2. Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 4-14

DOI: https://doi.org/10.33136/stma2019.01.004

Language: Russian

Annotation: This paper suggests method for analysis of the dynamics of the aircraft with weight asymmetry (transverse displacement of the center of mass) maneuvering in the atmosphere under the impact of the short-time alternating moment of engine thrust, spread out over a period. The engines are installed on the bottom of the aircraft at the maximum distance from its longitudinal axis. Angular motion with nominal and perturbed performances of the aircraft and flight conditions has been consistently considered. Before maneuvering, the aircraft is set at the trimming angle of attack, determined by the magnitude of transverse displacement of the center of mass and aerodynamic characteristics. The direction of the aircraft maneuvering in the atmosphere depends on the acting moments of forces and time diversity of the engine firings to speed up and shutdown the angular motion. In the absence of disturbances, the angular motion of the aircraft shows in part signs of regular precession (almost constant precession velocity and nutation angle) and autorotation (close to zero self-rotation angle). Under the influence of disturbances, the spread of the aircraft angular motion parameters increases, mainly at the angle of precession, which characterizes changes in the direction of maneuvering. Composition of disturbances includes the spread of the aircraft technical characteristics (position of the center of mass, moments of inertia, aerodynamic coefficients, velocity head, etc.), errors associated with the operation of the engines (thrust spread, time of ignition and shutdown, angular alignment of their longitudinal axes). Terminal control was introduced to realize the given final state and to reduce the disturbances impact on the maneuvering parameters based on the registered deviations of the angular motion from the nominal one after the first shutdown of the attitude maneuver engine. Monte Carlo method (1000 variations of random realizations of the acting perturbations) confirmed the effectiveness of the proposed terminal control of the angular motion of the aircraft to provide the specified maneuvering parameters.

Key words: angular motion, angles of precession, nutation (attack), proper rotation, spread of technical characteristics of the aircraft

Bibliography:

1. Lebedev A. A., Gerasuta N. F. Ballistika raket. M.: Mashinostroenie, 1970. 244 p.
2. Buchgolz N. N. Osnovnoy kurs teoreticheskoi mechaniki. Ch. 2. M.: Nauka, 1972. 332 p.
3. Aslanov V. S. Prostranstvennoe dvizhenie tela pri spuske v atmosfere. M.: Fizmatlit, 2004. 160 p.
4. Gukov V. V., Kirilinko P. P., Mareev Y. A., Samarskiy A. M., Chernov V. V. Osnovy teorii poleta letatelnykh apparatov. M.: MAI, 1978. 70 p.
5.Teoretychni osnovy poletu kosmichnykh apparativ. Ministerstvo oborony Ukrainy, 2000. 180 p.

Downloads: 46
Abstract views: 
597
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Ashburn; Columbus; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Boydton; Boydton; Portland; San Mateo; San Mateo; San Mateo; Boydton; Boydton; Boydton; Boydton; Boydton; Boydton; Des Moines; Boardman; Boardman; Ashburn29
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
China Shanghai1
Belgium Brussels1
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
2.1.2019 Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg
2.1.2019 Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg
2.1.2019 Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg

Keywords cloud

]]>
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse https://journal.yuzhnoye.com/content_2019_2-en/annot_4_2_2019-en/ Mon, 15 May 2023 15:45:37 +0000 https://journal.yuzhnoye.com/?page_id=27206
2 Organization: The Institute of Technical Mechanics, Dnipro, Ukraine 1 ; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 2 ; Oles Honchar Dnipro National University, Dnipro, Ukraine 3 Page: Kosm. Variatsionnye metody v teorii uprugosti i plastichnosti / per. O fazovykh prevrasheniyakh v oblasti neodnorodnosti materiala. S., Levin V. Tulskogo gos. Novye vozmozhnosti: nauchn.-techn. Uprochnenie poverkhnosti metallov pokrytiyami diskretnoy struktury s povyshennoy adhezionnoy i cohezionnoy stoykostyu. Projection-iterative schemes for the realization of the finite-element method in problems of deformation of plates with holes and inclusions.
]]>

4. Numerical simulation of behavior of elastic structures with local stiffening elements

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (2); 25-34

DOI: https://doi.org/10.33136/stma2019.02.025

Language: Russian

Annotation: Availability of different inclusions, stiffenings, discontinuities (holes, voids and flaws) are the factors that cause structural irregularity and are typical for structural elements and buildings from various current technology areas, in particular aerospace technology. They significantly influence the deformation processes and result in stress concentration, which can cause local damages or malconformations and as a result lead to impossibility to further use the structure. Materials used are also heterogeneous in its structure. Inclusions can simulate thin stiffening elements, straps, welded or glue joints. It is necessary to detect the thin inclusions when phase transformations of materials are studied, for example, when martensite structures are formed. Study of the various bodies with inclusions is very important in the powder technology, ceramics, etc., where powder, previously compressed under high pressure, is sintered at high temperatures. Use of surface hardening that increases working efficiency of the structural elements is prospective in many engineering sectors. It is important to develop discrete hardening, implemented through manufacturing schemes of particular type. When discrete hardenings impact on the structural elements mode of deformation is simulated, they can also be considered as inclusions of specific structure. Inclusions can also simulate banding of the ferritic-pearlitic structure in the microstructure, related to the complex preloading under material plastic forming. It is advisable to use numerical methods for studies that are universal and suitable for objects of various shapes, sizes and types of loading. Main numerical methods are finite difference method, boundary element method, variation grid-based method, finite element method, method of local variations. This article features ANSYS – based computer simulation of the aerospace structural element behavior – a rectangular plate with two extended elastic inclusions of different rigidity, simulating elastic heterogeneities of structures and materials.

Key words: finite-element method, strength, inclusions, computer simulation

Bibliography:

1. Brebbia K., Telles J., Wroubell L. Metody granichnykh elementov / per. s angl. M., 1987. 524 s.
2. Vasidzu K. Variatsionnye metody v teorii uprugosti i plastichnosti / per. s angl. M., 1987. 544 s.
3. Vilchevskaya Ye. N., Korolev I. K., Freidin A. B. O fazovykh prevrasheniyakh v oblasti neodnorodnosti materiala. Ch. 2: Vzaimideistvie treschiny s vklyucheniem, preterpevayushim fazovoe prevraschenie. Izv. RAN. Mekhanika tverdogo tela. 2011. № 5. S. 32–42.
4. Hart E. L. Konechnoelementniy analiz ploskodeformiruemukh sred s vklyucheniyami. Visn. Dnipropetr. un-tu. Ser.: Mekhanika. 2011. Vyp. 15, t. 2. S. 39–47.
5. Hart E. L., Hudramovich V. S. Chislennoye modelirovanie povedeniya ploskodeformiruemykh strukturirivannykh sred na osnove proektsionno-iteratsionnykh ckhem MKE. Matemat. modelirovanie v mekh. deform. tel i konstruktsiy: materialy 24-oy Mezhdunarod. conf. (SPb., Rossiya, 2011). SPb., 2011. T. 11. S. 37–39.
6. Hart E. L., Hudramovich V. S. Chislennoe modelirovanie structurirovannykh sred. Dopovidi NAN Ukrainy. 2012. № 5. S. 49–56.
7. Hart E. L., Hudramovich V. S. Proektsionno-iteratsionnaya modifikatsia metoda lokalnykh variatsiy dlya zadach s kvadratychnym funktsionalom. Prikl. Matematika I mekhanika. 2016. T. 80, № 2. S. 218–230. https://doi.org/10.1016/j.jappmathmech.2016.06.005
8. Hudramovich V. S. Osobennosti neuprugogo povedeniya neodnorodnykh obolochechnykh elementov konstruktsiy. Aktualnye problem mekhaniki: monografia/ za red. M. V. Polyakova. Dnipro, 2018. S. 195–207.
9. Hudramovich V. S., Hart E. L. Konechnoelementniy analiz processa rasseyanogo razrusheniya ploskodeformiruemykh uprugoplastichnykh sred s lokalnymi contsetratami napryazheniy. Uprugost’ I neuprugost’: Materialy Mezhdunarod. nauchn. symp. po problemam mekhaniki deformiruemykh tel, posvyaschennogo 105-letiyu so dnya rozhdeniya A. A. Ilyushina (Moskow, 2016 ). M., 2016. S. 158–161.
10. Hudramovich V. S., Hart E. L., Strunin K. A. Modelirovanie processa deformirovaniya plastiny s uprugimi protyazhonnymi vklyucheniyami na osnove metoda konechnykh elementov. Tekhn. mechanika. 2014. № 2. S. 12–24.
11. Hudramovich V. S., Demenkov A. F., Konyukhov S. N. Nesuschaya sposobnost’ neidealnykh tsilindricheskykh obolochek s uchetom plasticheskykh deformatsiy. Prochnost’ I nadezhnost’ elementov konstruktsiy: sb. nauchn. tr. K., 1982. S. 45–48.
12. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliyanie vyrezov na prochnost’ tsilindrycheskykh otsekov raket-nositeley pri neuprugom deformirovanii materiala. Kosmichna nauka I technologia. 2017. T. 23, № 6. S. 12–20.
13. Hudramovich V. S., Levin V. M., Hart E. L. i dr. Modelirovanie processa deformirovaniya plastinchatykh elementov zherezobetonnykh konstruktsiy teploenergetiki s ispolzovaniem MKE. Techn. mechanika. 2015. № 2. S. 59–70.
14. Hudramovich V. S., Reprintsev A. V., Ryabokon’ S. A., Samarskaya E. V. Otsenka resursa konstruktsiy raketno-kosmicheskoy techniki pri uchete vliyaniya kontsetratov napryazheniy v vide otverstiy. Technicheskaya diagnostika i nerazrushaushiy control. 2016. № 2. S. 28–36.
15. Gultyaev V. I., Zubchaninov V. G., Zubchaninov D. V. Strukturnye izmeneniya stali 45 v processe eyo deformirovaniya. Izv. Tulskogo gos. un-ta. 2005. Vyp. 8. S. 26-29.
16. Zenkevich O., Morgan K. Konechnye elementy i aproximatsia / per. s angl. M., 1986. 318 s.
17. Kashanov A. E. Perspektivy sotrudnichestva NAN Ukrainy, NAN Belarusi i Yuzhnoye SDO dlya resheniya problemnykh voprosov kosmicheskoy otrasli. Raketnaya technika. Novye vozmozhnosti: nauchn.-techn. sborn. / pod red. A. V. Degtyareva. Dnepr, 2019. S. 281–294.
18. Koval’ Y. N., Lobodyuk V. A. Deformatsionnye i relaksatsionnye yavlenia pri prevraschenniyakh martensitnogo typa. K., 2010. 288 s.
19. Lyashenko B. A., Kuzema Y. A., Digahm M. S. Uprochnenie poverkhnosti metallov pokrytiyami diskretnoy struktury s povyshennoy adhezionnoy i cohezionnoy stoykostyu. К., 1984. 57 s.
20. Stern M. B., Rud’ V. D. Mekhanichni ta kompyuterni modeli konsolidatsii granulyuovanykh seredovysh na osnovi poroshkiv metaliv i keramiki pri deformuvanni ta spikanni / za red. V. V. Skorokhoda. Lutsk, RVV LNTU, 2010. 232 s.
21. ANSYS release 18.1 Documentation for ANSYS WORKBENCH: ANSYS Inc.
22. Hart E., Hudramovich V. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance–2012: Proc. of Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). P. 157–164.
23. Hart E., Hudramovich V. Projection-iterative schemes for the realization of the finite-element method in problems of deformation of plates with holes and inclusions. J. Math. Sci. 2014. Vol. 203. № 1. P. 55–69. https://doi.org/10.1007/s10958-014-2090-x
24. Hudramovich V. S. Features of nonlinear deformation and critical states shell structures with geometrical imperfections. Int. Appl. Mech. 2006.Vol. 42, № 12. P. 1323–1355. https://doi.org/10.1007/s10778-006-0204-y
25. Hudramovich V. S., Hart E. L., Ryabokon’ S. A. Elastoplastic deformation of nonhomogeneous plates. J. Eng. Math. 2013. Vol. 78, № 1. P. 181–197. https://doi.org/10.1007/s10665-010-9409-5
26. Hudramovich V. S., Hart E. L., Strunin K. A. Modeling of the behavior plane-deformable elastic media with elongated elliptic and rectangular inclusions. Materials Science. 2017. Vol. 52, № 6. P. 768–774. https://doi.org/10.1007/s11003-017-0020-z
27. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: Procedings Int. Conf. (Helsinki, Finland, 1999). Amsterdam/ New York / Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
28. Olevsky E. A., Maximenko A. and Van Der Biest O. On-line sintering strength of ceramic composites. Int. J. Mech. Sci. 2002. Vol. 44. P. 755–771. https://doi.org/10.1016/S0020-7403(02)00005-X

Downloads: 45
Abstract views: 
589
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; North Bergen; Plano; Columbus; Columbus; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
China Shanghai1
Finland Helsinki1
Unknown1
Pakistan Multan1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Czech Prague1
Ukraine Dnipro1
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>