Search Results for “Makarov O. D.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 06 Nov 2024 11:36:47 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Makarov O. D.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 18.1.2020 Development of autonomous power engineering systems with hydrogen energy storage https://journal.yuzhnoye.com/content_2020_1-en/annot_18_1_2020-en/ Wed, 13 Sep 2023 11:57:42 +0000 https://journal.yuzhnoye.com/?page_id=31056
1 Organization: Pidgorny A. As such an element, a buffer system based on a hydrogen energy storage device is proposed. Hydrogen: the future energy carrier. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy.   https://doi.org/10.1109/TCST.2008.922504 9. Makarov (Ukrajina). № Vliianie rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniia. Osnovnye printsipy raboty i algoritm upravleniya bezmembrannym elektrolizerom vysokogo davleniia.   https://doi.org/10.17721/fujcV6I2P73-79 17.   https://doi.org/10.15407/pmach2019.04.048 20. Hydrogen Energy.
]]>

18. Development of autonomous power engineering systems with hydrogen energy storage

Organization:

Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 160-169

DOI: https://doi.org/10.33136/stma2020.01.160

Language: Russian

Annotation: The article analyzes the energy potential of alternative sources of Ukraine. The projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling automobile vehicles located in areas with high solar radiation potential, are considered. During the operation of water desalination plants using a solar power station as an energy source, contingencies are very likely to arise due to either a power outage (due to cloudy weather) or an emergency failure of individual elements of the system. In this case, it is required to ensure its removal from service without loss of technological capabilities (operability). For this purpose, it is necessary to provide for the inclusion in the technological scheme of the energy technological complex of an additional element that ensures operation of the unit for a given time, determined by the regulations for its operation. As such an element, a buffer system based on a hydrogen energy storage device is proposed. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. N. Podgorny of the National Academy of Sciences of Ukraine allows producing and accumulating the hydrogen under high pressure, which eliminates the use of compressor technology.

Key words: alternative energy sources, hydrogen, solar energy, hydrogen generator

Bibliography:
1. Syvolapov V. Potentsial vidnovliuvanykh dzherel enerhii v Ukraini. Agroexpert. 2016. № 12 (101). S. 74–77.
2. Züttel A., Remhof A., Borgschulte A., Friedrichs O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. № 368(1923). Р. 3329–3342. https://doi.org/10.1098/rsta.2010.0113
3. Vozobnovliaemaia energetika. URL: https://nv.ua/tags/vozobnovljaemaja-enerhetika.htmt (access date: 27.01.2020).
4. Sherif S. A., Barbir F., Veziroglu T. N. Wind energy and the hydrogen economy-review of the technology. Solar energy. 2005. № 78(5). P. 647–660. https://doi.org/10.1016/j.solener.2005.01.002
5. Schlapbach L. Technology: Hydrogen-fuelled vehicles. Nature. 2009. № 460(7257). P. 809. https://doi.org/10.1038/460809a
6. Shevchenko A. A., Zipunnikov M. М., Kotenko А. L., Vorobiova I. O., Semykin V. M. Study of the Influence of Operating Conditions on High Pressure Electrolyzer Efficiency. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 53–60. https://doi.org/10.15407/pmach2019.04.053
7. Clarke R. E., Giddey S., Ciacchi F. T., Badwal S. P. S., Paul B., Andrews J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy. 2009. № 34(6). P. 2531–2542. https://doi.org/10.1016/j.ijhydene.2009.01.053
8. Kunusch C., Puleston P. F., Mayosky M. A., Riera J. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Transactions on Control Systems Technology. 2009. № 17(1). P. 167–174. https://doi.org/10.1109/TCST.2008.922504
9. Mazloomi K., Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012. № 16. P. 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028
10. Sharma S., Ghoshal S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015. № 43. P. 1151–1158. https://doi.org/10.1016/j.rser.2014.11.093
11. Prystrii dlia oderzhannia vodniu vysokoho tysku: pat. 103681 Ukraina: MPK6 S 25V 1/12 / V. V. Solovey, A. A. Shevchenko, A. L. Kotenko, O. О. Makarov (Ukrajina). № 2011 15332; zajavl. 26.12.2011; opubl. 10.07.2013, Biul. № 21. 4 s.
12. Shevchenko А. А. Ispolzovanie ELAELov v avtonomnykh energoustanovkakh, kharakterizuyushchikhsia neravnomernostju energopostupleniia. Aviatsionno-kosmicheskaia tekhnika i technologiia: sb. nauch. tr. 1999. Vyp. 13. S. 111–116.
13. Solovey V. V., Zhirov А. S., Shevchenko А. А. Vliianie rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniia. Sovershenstvovaniie turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniia: sb. nauch. tr. 2003. S. 250–254.
14. Solovey V., Kozak L., Shevchenko A., Zipunnikov M., Campbell R., Seamon F. Hydrogen technology of energy storage making use of windpower potential. Problemy Mashinostroyeniya. Journal of Mechanical Engineering. 2017. Vol. 20, № 1. P. 62–68. https://doi.org/10.17721/fujcV6I2P73-79
15. Solovey V. V., Kotenko А. L., Vorobiova I. О., Shevchenko A. А., Zipunnikov M. М. Osnovnye printsipy raboty i algoritm upravleniya bezmembrannym elektrolizerom vysokogo davleniia. Problemy mashinostroyeniia. 2018. T. 21, №. 4. S. 57–63. https://doi.org/10.15407/pmach2018.04.057
16. Solovey V., Khiem N. T., Zipunnikov M. M., Shevchenko A. A. Improvement of the Membraneless Electrolysis Technology for Hydrogen and Oxygen Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 2. P. 73–79. https://doi.org/10.17721/fujcV6I2P73-79
17. Solovey V., Zipunnikov N., Shevchenko A., Vorobjova I., Kotenko A. Energy Effective Membrane-less Technology for High Pressure Hydrogen Electro-chemical Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 1. P.151–156. https://doi.org/10.17721/fujcV6I1P151-156
18. Solovey V. V., Zipunnikov М. М., Shevchenko А. А., Vorobiova І. О., Semykin V. M. Bezmembrannyi henerator vodniu vysokoho tysku. Fundamentalni aspekty vidnovliuvano-vodnevoi enerhetyky i palyvno-komirchanykh technologij / za zahal. red. Yu. М. Solonina. Kyiv, 2018. S. 99–107.
19. Matsevytyi Yu. M., Chorna N. A., Shevchenko A. A. Development of a Perspective Metal Hydride Energy Accumulation System Based on Fuel Cells for Wind Energetics. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 48–52. https://doi.org/10.15407/pmach2019.04.048
20. Phillips R., Edwards A., Rome B., Jones D. R., Dunnill C. W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy. 2017. № 42. P. 23986–23994. https://doi.org/10.1016/j.ijhydene.2017.07.184
Downloads: 39
Abstract views: 
1536
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Finland Helsinki1
Unknown1
Mongolia1
Canada Monreale1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor https://journal.yuzhnoye.com/content_2019_1-en/annot_18_1_2019-en/ Wed, 24 May 2023 16:00:39 +0000 https://journal.yuzhnoye.com/?page_id=27723
Functional mockups of the executive unit, control box, as well as the computer-controlled technological test console were manufactured on the basis of the requirements specification documents. Upravlenie electroprivodami: Uch. L.: Energoizdat, 1982. Makarov I. i dop. Available at: https://doi.org/10.33136/stma2019.01.122 . https://doi.org/10.33136/stma2019.01.122 . March.2019, doi: https://doi.org/10.33136/stma2019.01.122 . Missile armaments Том: 2019 Випуск: 2019, (1) Рік: 2019 Сторінки: 122—131.doi: https://doi.org/10.33136/stma2019.01.122 . Missile armaments Том: 2019 Випуск: 2019, (1) Рік: 2019 Сторінки: 122—131.doi: https://doi.org/10.33136/stma2019.01.122 .
]]>

18. Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 122-131

DOI: https://doi.org/10.33136/stma2019.01.122

Language: Russian

Annotation: The basic results of the design calculations and mathematical modelling of the control processes in the precision high-speed servo drive are presented, as well as results of experimental studies of the functional mock-up of this servo drive’s movable gears of the throttle and fuel flow regulator of the ILV main engine. Major task of the studies was theoretical and experimental verification of the required static and dynamic accuracy of the servo drive in the process of try-out of the command signals reception from the main engine’s controller. In the phase of development, theoretical study of the linearized servo drive with application of transformations and theorems of Laplace passages to the limit is conducted. Analytical dependences between servo drive circuit parametres, its elements and characteristics of the control signals are obtained. Instrument errors and servostatic elasticity of the servo drive are calculated. Calculation model including the basic nonlinearities of this servo drive is prepared. Mathematical modelling of the control processes is conducted according to the computational model, varying the circuit and design parameters of the electric drive. Results of the theoretical studies were taken as input data for the requirements specification document to develop the executive unit with the electromotor, reduction gear and output shaft position sensor, and the control box. Functional mockups of the executive unit, control box, as well as the computer-controlled technological test console were manufactured on the basis of the requirements specification documents. The required scope of the laboratory-development tests of the functional mock-up of the servo drive was conducted. Results of the conducted activities confirm the achievement of the required accuracies of the servo drive in the laboratory environment.

Key words: control system, permanent-field synchronous motor, mathematical model, computational analysis

Bibliography:
1. Programma «Mayak», raketa kosmicheskogo naznacheniya, marsheviy dvigatel’ pervoi stupeni: Techn. proekt. Dnepropetrovsk: GP KB «Yuzhnoye», 2015. 490 p.
2. Controller marshevogo dvigatelya pervoi stupeni RKN: Poyasnitelnaya zapiska. Dnepr: GP KB «Yuzhnoye», 2017. 108 p.
3. Marsheviy dvigatel pervoi stupeni RKN: Technicheskoe zadanie na razrabotku electromechanicheskogo privoda mechanizmov drosselya i regulyatora raschoda goryuchego. Dnepr: GP KB «Yuzhnoye», 2016. 68 p.
4. Basharin A. V., Novikov V. A., Sokolovskiy G. G. Upravlenie electroprivodami: Uch. posob. dlya VUZov. L.: Energoizdat, 1982. 392 p.
5. Makarov I. M., Menskiy B. M. Lineinye avtomaticheskie systemy. – 2-e izd., pererab. i dop. M.: Mashinostroenie, 1982. 504 p.
6. Otchet po rezultatam ispytania maketnogo obraztsa electromechanicheskogo privoda mechanizmov drosselya i regulyatora goruchego. Dnepr: GP KB «Yuzhnoye», 2018. 50 p.
Downloads: 36
Abstract views: 
666
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Unknown Melbourne;2
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
13.2.2019 Study of the stress and strain state of the multilayer bellows https://journal.yuzhnoye.com/content_2019_2-en/annot_13_2_2019-en/ Mon, 15 May 2023 15:46:07 +0000 https://journal.yuzhnoye.com/?page_id=27215
Proposed approach is based on the use of axial symmetry of the structure for transition from 3D calculation model to 2D one. Calculations take place in the elastoplastic setup, using the software package of the finite elements method. Results of the simulated change in the stress and strain state of the bellows per one cycle of the variable reloading were taken to find the amplitude of the plastic deformations in the most loaded area of the bellows, which allowed estimation of its fatigue strength in the conditions of lowcycle loading. Makarova». i dop. computer simulation , finite element method , calculation model , strength .
]]>

13. Study of the stress and strain state of the multilayer bellows

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 96-102

DOI: https://doi.org/10.33136/stma2019.02.096

Language: Russian

Annotation: Strength calculation example of the specific design bellows is taken to consider one of the possible approaches to the numerical simulation of the stress and strain state of the multilayer bellows. Proposed approach is based on the use of axial symmetry of the structure for transition from 3D calculation model to 2D one. Calculations take place in the elastoplastic setup, using the software package of the finite elements method. As an example of the proposed approach static and fatigue strength of the three-layer steel bellows of the Cyclone-4M fuel supply line are calculated. Calculation of the static strength of the bellows, loaded with internal pressure, showed that layer stresses achieve yield strength, at the same time preserving the bearing capacity of the structure. Results of the simulated change in the stress and strain state of the bellows per one cycle of the variable reloading were taken to find the amplitude of the plastic deformations in the most loaded area of the bellows, which allowed estimation of its fatigue strength in the conditions of lowcycle loading. Advantage of the proposed approach to the multilayer bellows strength evaluation is that it does not require large volumes of RAM and time to do the calculations.

Key words: computer simulation, finite element method, calculation model, strength

Bibliography:
1. GOST 21744-83. Silfony mnogosloynye metallicheskie. Obschie technicheskie uslovia. 72 s.
2. Prochnost’, ustoychivost’, kolebaniya: spravochnil; v 3-kh t. / pod red. I. A. Birgera, Ya. G. Panovko. M., 1968. T. 2. 462 s.
3. Grabin B. V., Davydov O. I., Zhikharev V. I. i dr. Osnovy konstruirovaniya raket-nositeley kosmicheskykh apparatov: uchebnik dlya studentov vuzov / pod red. V. P. Mishina, V. K. Karraska. M., 1991. 416 s.
4. Silfony. Raschet i proektirovanie / pod red. L. Y. Andreevoy. M., 1975. 156 s.
5. Issledovanie vliyaniya tekhnologicheskykh operatsiy na kachestvo izgotovleniya silfonov iz lenty staly marki DIN 1.4541 EN 1099-2 pri razlichnykh temperaturno-silovykh vozdeistviyakh i vibratsiyakh v processe izgotovleniya i ispytaniy: techn. otchet № 3 М-13 / PO YMZ im. A. M. Makarova». Dnepropetrovsk. 2013. 13 s.
6. Pisarenko G. S., Yakovlev A. P., Matveev V. V. Spravochnik po soprotivleniyu materialov / otv. red. Pisarenko G. S. 2-e izd., pererab. i dop. Kiev. 1988. 736 s.
7. Gusenkov A. P., Moskvitin G. M., Khoroshilov V. N. Malotsiklovaya prochnost’ obolochechnykh konstruktsiy. M., 1989. 254 s.
8. Kogaev V. P., Makhutov N. A., Gusenkov A. P. Raschety detaley mashin na prochnost’ i dolgovechnost’: spravochnik. M., 1985. 224 s.
9. DSTU EN 10088-2:2010. Stali nerzhavki. Ch. 2. List i strichka z koroziynotryvkykh staley zagalnoi pryznachenosti. Technichni umovy postachannya. 42 s.
Downloads: 38
Abstract views: 
799
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; North Bergen; Plano; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Cambodia Phnom Penh1
India Guntur1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
13.2.2019 Study of the stress and strain state of the multilayer bellows
13.2.2019 Study of the stress and strain state of the multilayer bellows
13.2.2019 Study of the stress and strain state of the multilayer bellows

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
6.2.2019 Stabilization of gas reducers adjustment https://journal.yuzhnoye.com/content_2019_2-en/annot_6_2_2019-en/ Mon, 15 May 2023 15:45:44 +0000 https://journal.yuzhnoye.com/?page_id=27208
, Makarov O. Gazovye reduktory. Vygodskiy M. Reduktory davleniya gaza. https://doi.org/10.1097/00000542-198002000-00014 6. I., Naidenova L. Analiz tipov (skhemnykh resheniy) reduktorov davleniya: techn. I., Makarov O. Available at: https://doi.org/10.33136/stma2019.02.042 . https://doi.org/10.33136/stma2019.02.042 . I., Makarov O. I., Makarov O. Missile armaments Том: 2019 Випуск: 2019, (2) Рік: 2019 Сторінки: 42—49.doi: https://doi.org/10.33136/stma2019.02.042 . I., Makarov O. Missile armaments Том: 2019 Випуск: 2019, (2) Рік: 2019 Сторінки: 42—49.doi: https://doi.org/10.33136/stma2019.02.042 . I., Makarov O. Missile armaments Том: 2019 Випуск: 2019, (2) Рік: 2019 Сторінки: 42—49.doi: https://doi.org/10.33136/stma2019.02.042 . I., Makarov O.
]]>

6. Stabilization of gas reducers adjustment

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 42-49

DOI: https://doi.org/10.33136/stma2019.02.042

Language: Russian

Annotation: The general information on gas pressure reducers, on their purpose in launch vehicles and spacecraft pneumohydraulic systems is set forth. The impact of different operating conditions on physical characteristics of these devices is considered. The main and auxiliary parametric characteristics of the reducer are presented and the physical process of gas pressure reduction in it is explained. The error of output pressure regulation is evaluated using full differential of function, whose arguments (input pressure, flow rate, temperature) have scatter. The reducer temperature curve is shown and the impact of structural temperature on the value of dynamic (with flow rate) and static (without flow rate) pressure in reducer output cavity is explained. The difference between the excess pressure reducer and absolute pressure reducer is shown. The brief review of the designs of liquid and bimetal thermal compensators is presented, their advantages and disadvantages are described and the experience of reducers testing with regulating springs made of elinvar is analyzed. Attention is focused on operating temperature and its impact on stability of reducer adjustment. The formulas that describe thermodynamic processes occurring in the reducer are presented. Special attention is given to the properties of regulating spring of the reducer because of change of elasticity modulus coefficient at different temperatures, the expected pressure scatter at reducer output is evaluated and the necessity of measures to reduce this error is explained. To compensate for temperature disturbance, the formula of gas pressure in closed volume of sensitive element is derived. The essence of original technique of pneumocorrection of initial pressure in sensitive element cavity that was proposed and introduced on Yuzhnoye SDO-developed reducers is set forth.

Key words: parametric characteristic, spring, elasticity modulus, thermal compensator, pneumocorrection

Bibliography:
1. Nazarova L. M., Utkin V. F., Titov S. M., Liseenko Y. I., Prisnyakov V. F., Gorbachev A. D. Klapany bortovykh system strategicheskykh raket i kosmicheskykh apparatov/ pod red. acad. M. K. Yangelya. M., 1969. 358 s.
2. Yermilov V. A., Nesterenko Y. V., Nikolaev V. G. Gazovye reduktory. L., 1981. 176 s.
3. Vygodskiy M. Y. Spravochnik po vyshey matematike. M., 1958. 783 s.
4. Golubev M. D. Gazovye regulyatory davleniya / pod red. prof. G. I. Voronina. M., 1964. 152 s.
5. Edelman A. I. Reduktory davleniya gaza. M., 1980. 167 s. https://doi.org/10.1097/00000542-198002000-00014
6. Khomyakov A. N., Trashutin A. I., Naidenova L. P. Analiz tipov (skhemnykh resheniy) reduktorov davleniya: techn. otchet №711-222/76 / KBU. Dnepropetrovsk, 1976. 50 s.

 

Downloads: 44
Abstract views: 
688
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Columbus; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Boydton; Boydton; Portland; San Mateo; Boydton; Boydton; Boydton; Boydton; Boydton; Boydton; Des Moines; Des Moines; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Cambodia Phnom Penh1
Finland Helsinki1
India Chandigarh1
Canada Monreale1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.2.2019 Stabilization of gas reducers adjustment
6.2.2019 Stabilization of gas reducers adjustment
6.2.2019 Stabilization of gas reducers adjustment

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
Editorial board-old https://journal.yuzhnoye.com/editorial-board-en-old/ Sat, 13 May 2023 16:40:20 +0000 https://test8.yuzhnoye.com/?page_id=26177
MAKAROV, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr O.
]]>
Editorial board

EDITOR-IN-CHIEF

A. V. DEGTYAREV, Doctor of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr

DEPUTY EDITOR-IN-CHIEF

A. E. KASHANOV, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr

EXECUTIVE EDITOR OF THE EDITORIAL BOARD

V. P. SAVCHENKO, Yangel Yuzhnoye State Design Office, Dnepr

MEMBERS OF THE EDITORIAL BOARD

F. GRAZIANI, Professor and President of Aerospace, Rome
A. P. KUSHNAREV Yangel Yuzhnoye State Design Office, Dnepr
V. M. SIRENKO, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
V. I. KONOKH, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
A. N. LOGINOV, Yangel Yuzhnoye State Design Office, Dnepr
G. A. MAIMUR, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
A. L. MAKAROV, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
O. M. MASHCHENKO, Yangel Yuzhnoye State Design Office, Dnepr
A. V. NOVIKOV, Candidate of Engineering Science, Professor, Yangel Yuzhnoye State Design Office, Dnepr
A. M. POTAPOV, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
A. F. SANIN, Doctor of Engineering Science, Professor, Oles Honchar Dnipro National University
V. D. TKACHENKO, Yangel Yuzhnoye State Design Office, Dnepr
V. S. KHOROSHILOV, Doctor of Engineering Science, Professor, Yangel Yuzhnoye State Design Office, Dnepr
A. D. SHEPTUN, Doctor of Engineering Science, Docent, Yangel Yuzhnoye State Design Office, Dnepr

Editorial board-old
Editorial board-old
Editorial board-old
]]>
3.1.2023 Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development https://journal.yuzhnoye.com/content_2023_1-en/annot_3_1_2023-en/ Fri, 12 May 2023 16:10:31 +0000 https://test8.yuzhnoye.com/?page_id=26987
Makarovtsa/ Tula-2006/ 425 str. 122-mm reaktivnaya sistema zalpovogo ognya 9К51М «Tornado-G» BM 2Б17-1. URL:http://zonwar.ru/artileru/reakt_sistem.html/Tornado-G.html 5. Reaktivnaya sistema zalpovogo ognya «Tornado». URL: https://militaryarms.ru/voennaya-texnika/artilleriya/rszo-tornado/ 6. UdarTornado”. URL: https://studylib.ru/doc/693908/ 9. Modernizirovannaya boevaya mashina 2B17 RSZO «Grad» s ASUNO i APP OAO «Motovilihinskie zavody». Tornado-G. URL: https://ru.wikipedia.org/wiki/Tornado-G 14. PAO «Motovilihinskie zavody» vypolnilo goskontrakt po RSZOTornado-G”. missile , 9K51 Grad , 9M217 , 9M218 , 9M521 , 9M522 , Tornado-G , 9M538 , 9M539 , 9M541 .
]]>

3. Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 31-40

DOI: https://doi.org/10.33136/stma2023.01.031

Language: Ukrainian

Annotation: The article dwells on the multiple launch rocket systems with high firepower, firing rate and manoeuvrability, which continue to be one of the basic means of destruction of the land forces in the conditions of the modern armed conflicts. Authors observed the importance of reconstruction and upgrading of multiple launch rocket systems of Grad 9К51, Hurricane 9К57 and Tornado 9К58 types and missiles they use by the enterprises of the domestic military-industrial complex. The article dwells on the main areas of upgrading of the multiple launch rocket system Grad 9K51 performed by NPO Splav and co-operating enterprises in 1997‒1998 for a foreign customer. The key factors that allowed improving the performance of the Grad system in the upgrading process are identified in this article. The main characteristics of the unguided missiles 9M217, 9M218, 9M521, 9M522, designed for the foreign customer, had been investigated. The performance characteristics of the Tornado-G multiple launch rocket system which went into service with the Ministry of Defense of the Russian Federation in 2014, as well as the family of the upgraded unguided missiles 9M538, 9M539, 9M641, are analyzed. The article identifies the main areas of work for further improvement of the performance characteristics of the 122-mm unguided missile, developed by Yuzhnoe Design Office for the multiple launch rocket system 9K51 Grad. This article can be useful for the specialists in development of new and upgrading outdated systems of rocket weapons.

Key words: multiple launch rocket system (MLRS), missile, 9K51 Grad, 9M217, 9M218, 9M521, 9M522, Tornado-G, 9M538, 9M539, 9M541

Bibliography:
1. Kislitsin A.M., Polegenko O.F. Rozvytok ta modernizatsia suchasnyh reaktivnyh system zalpovogo vognyu. Zbirnyk naukovyh prats. Kyiv. Vyp. №4(75), 2019. S. 155-167
2. Reaktivnye systemy zalpovogo ognya/ S.V. Gurov/ Pod obschey redaktsiey akademika RARAN N.A. Makarovtsa/ Tula-2006/ 425 str.
3. Kapustnik-B. Kompleks sredstv avtomatizirovannogo upravleniya ogniem (indeks 1В126). URL: http://roe.ru/catalog/sukhoputnye-vosyka/kompleksy-sredstv-avtomatizirovannogo-upravleniya-ognem-artillerii/kapustnik-b/
4. 122-mm reaktivnaya sistema zalpovogo ognya 9К51М «Tornado-G» BM 2Б17-1. URL:http://zonwar.ru/artileru/reakt_sistem.html/Tornado-G.html
5. Reaktivnaya sistema zalpovogo ognya «Tornado». URL: https://militaryarms.ru/voennaya-texnika/artilleriya/rszo-tornado/
6. Udar “Tornado”. Sekrety samoi moschnoi reaktivnoi sistemy zalpovogo ognya Rossii. URL: https://tass.ru/armiya-i-opk/5801642
7. 9К51M «Tornado-G», 122-mm reaktivnaya sistema zalpovogo ognya. URL: https://www.arms-expo.ru/armament/samples/1216/65431/
8. Rossiyskie RSZO: dalshe, tochnee, effectivnee. URL: https://studylib.ru/doc/693908/
9. Oskolochno-fugasniy snaryad 9M521. URL: http://rbase.new-factoria.ru/missile/wobb/grad/9m521.htm
10. Reaktivnaya sistema zalpovogo ognya «Grad». Modernizirovannaya boevaya mashina 2B17 RSZO «Grad» s ASUNO i APP OAO «Motovilihinskie zavody». Presentatsionnye materialy.
11. Reaktivniy snaryad M21ОF. Trebovaniya k priemno-sdatochnym ispytaniyam na bezopasnost i kuchnost. Komplekt RKD. Chertezh № 3-017200 «10»
12. Tablitsy strelby oskolochno-fugasnymi snaryadami M-21OF. Voenizdat MO SSSR, M. 1975.
13. Tornado-G. URL: https://ru.wikipedia.org/wiki/Tornado-G
14. 9M521.122-mm neupravlyaemiy oskolochno-fugasniy reaktivniy snaryad s golovnoi chastiu povyshennogo moguschestva. URL: http://roe.ru/catalog/sukhoputnye-vosyka/boepripasy/9m521/
15. 9M522. 122-mm neupravlyaemiy oskolochno-fugasniy reaktivniy snaryad s otdelyaemoy oskolochno-fugasnoy golovnoi chastiu (indeks 9М522). URL: http://roe.ru/catalog/sukhoputnye-vosyka/boepripasy/9m522/
16. 9M217. 122-mm neupravlyaemiy reaktivniy snaryad s samopritselivayuschimisya boevymi elementami (indeks 9М217). URL: http://roe.ru/catalog/sukhoputnye-vosyka/boepripasy/9m217/
17. 9M218. 122-mm neupravlyaemiy reaktivniy snaryad s kumulyativno-oskolochnymi boevymi elementami (indeks 9M218). URL: http://roe.ru/catalog/sukhoputnye-vosyka/boepripasy/9m218/
18. TRG-122 Guided Rocket – Roketsan. URL: www.roketsan.com.tr/en/product/trg-122-guided-rocket/
19. Oskolochno-fugasniy snaryad 9M522 s otdelyaemoy GCh. URL: http://rbase.new-factoria.ru/missile/wobb/grad/9m522.htm
20. Snaryad 9M217 s kassetnoy GCh. URL: http://rbase.new-factoria.ru/missile/wobb/grad/9m217.htm
21. Reaktivniy snaryad 9M218 s kassetnoy GCh. URL: http://rbase.new-factoria.ru/missile/wobb/grad/9m218.htm
22. PAO «Motovilihinskie zavody» vypolnilo goskontrakt po RSZO “Tornado-G”. URL: https://topwar.ru/164625-pao-motovilihinskie-zavody-vypolnilo-goskontrakt-po-rszo-tornado-g.html
23. Neupravlyaemiy reaktivniy snaryad 9M538. URL: http://rbase.new-factoria.ru/missile/wobb/8779/8779.shtml
24. Neupravlyaemiy reaktivniy snaryad 9M539. URL: http://rbase.new-factoria.ru/missile/wobb/8780/8780.shtml
25. Neupravlyaemiy reaktivniy snaryad 9M541. URL: http://rbase.new-factoria.ru/missile/wobb/8781/8781.shtml
26. 122-mm reaktivnye snaryady dlya RSZO “Tornado-G”. URL: https://bmpd.livejournal.com/3326341.html
Downloads: 3
Abstract views: 
1109
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
Ukraine Kyiv; Kremenchuk2
Germany Falkenstein1
3.1.2023 Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development
3.1.2023 Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development
3.1.2023 Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>