Search Results for “Meleshko A. O.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 21:17:59 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Meleshko A. O.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING https://journal.yuzhnoye.com/content_2024_1-en/annot_10_1_2024-en/ Mon, 17 Jun 2024 08:44:04 +0000 https://journal.yuzhnoye.com/?page_id=35018
Key words: navigation system , mems-sensors , accelerometers , angular velocity sensors , reference attitude Bibliography: Meleshko V.V., Nesterenko O.I.
]]>

10. Method of autonomous determination of the rocket’s reference attitude during pre-launch processing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 85-92

DOI: https://doi.org/10.33136/stma2024.01.085

Language: Ukrainian

Annotation: To solve the navigation tasks (determination of the apparent accelerations and angular velocities and calculation of rocket orientation angles) in the rocket engineering, the data from the sensing elements (angular velocity sensors and accelerometers) is used. Accuracy of reference attitude determination of the rocket in the steady mode (at lift-off) has great influence on accuracy of the received navigation data during the flight. Gimballess inertial navigation system, built on the basis of inertial MEMS-sensors of Industry class (three angular velocity sensors and three accelerometers), is taken as the navigation device. In the classical version, the integration of data from angular velocity sensors and from accelerometers is the basis of gimballess inertial navigation system operation. It results in accumulation of errors when solving the navigation task (in particular due to the integration of data from angular velocity sensors). Taking it into consideration, the alternative method of rocket’s reference attitude determination during the pre-launch processing is offered. This method does not use mathematical operations of integration and is autonomous. Initial data, received from the gimballess inertial navigation system, is used as the output data. This data is used to determine the rocket’s reference attitude (orientation of object-centered coordinates in the geographical reference system) in the steady mode. Orientation angles are determined without the integration of data picked up from the angular velocity sensors. The comparative analysis to define the processing efficiency of the navigation device initial data was held during the determination of the rocket’s orientation angles in the steady mode, using the proposed method and Runge-Kutta method. The received results showed that accuracy of the reference attitude determination with the proposed method is higher. Thus, the proposed method will help reduce the errors in determination of the rocket’s reference attitude in the steady mode that in the future will improve the accuracy in determination of navigational parameters during the rocket’s flight.

Key words: navigation system, mems-sensors, accelerometers, angular velocity sensors, reference attitude

Bibliography:
  1. Meleshko V.V., Nesterenko O.I. Besplatformennye inertsialnye navigatsionnye systemy. Ucheb. posobie. Kirovograd: POLIMED – Service, 2011. 164 s.
  2. Vlasik S.N., Gerasimov S.V., Zhuravlyov A.A. Matematicheskaya model besplatformennoy inertsialnoy navigatsionnoy systemy i apparatury potrebitelya sputnikovoi navigatsionnoy systemy aeroballisticheskogo apparata. Nauka i technika Povitryannykh Sil Zbroinykh Sil Ukrainy. 2013. № 2(11). s. 166-169.
  3. Waldenmayer G.G. Protsedura pochatkovoi vystavki besplatformennoy inertsialnoy navigatsionoy systemy z vykorystannyam magnitometra ta rozshirennogo filtra Kalmana. Aeronavigatsini systemy. 2012. s. 8.
  4. Korolyov V.M., Luchuk Ye.V., Zaets Ya.G., Korolyova O.I., Miroshnichenko Yu.V. Analiz svitovykh tendentsiy rozvytku system navigatsii dlya sukhoputnykh viysk. Rozroblennya ta modernizatsia OVT. 2011. №1(4). s.19-29. https://doi.org/10.33577/2312-4458.4.2011.19-29
  5. Avrutov V.V., Ryzhkov L.M. Pro alternativniy metod avtonomnogo vyznachennya shyroty i dovgoty rukhomykh obiektiv. Mekhanika gyroskopichnykh system. 2021. №41. s.  122-131. https://doi.org/10.20535/0203-3771412021269255
  6. Bugayov D.V., Avrutov V.V., Nesterenko O.I. Experimentalne porivnyannya algoritmiv vyznachennya orientatsii na bazi complimentarnogo filtru ta filtru Madjvika. Avtomatizatsiya technologichnykh i biznes-protsesiv. 2020. T. 12, №3. s. 10-19.
  7. Chernyak M.G., Kolesnik V.O. Zmenshennya chasovykh pokhibok inertsialnogo vymiryuvalnogo modulya shlyakhom realizatsii yogo strukturnoi nadlyshkovosti na bazi tryvisnykh micromekhanichnykh vymiruvachiv. Mekhanika giroskopichnykh system. 2020. №39. s. 66-80. https://doi.org/10.20535/0203-3771392020229096
  8. Rudik A.V. Matematichna model pokhibok accelerometriv bezplatformenoi inertsialnoi navigatsinoi systemy. Visnyk Vynnitskogo politechnychnogo institutu. 2017. №2. s. 7-13.
  9. Naiko D.A., Shevchuk O.F. Teoriya iomovirnostey ta matematychna statistika: navch. posib. Vinnytsya: VNAU. 2020. 382 s.
  10. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya bezplatformennykh inertsialnykh navigatsionnykh system. SPb.: GNTs RF OAO «Kontsern «TsNII «Electropribor». 2009. 280 s.
  11. Novatorskiy M.A. Algoritmy ta metody obchislen’ [Electronniy resurs]: navch. posib. dlya stud. KPI im. Igorya Sikorskogo. Kiyv: KPI im. Igorya Sikorskogo. 2019. 407 s.
Downloads: 17
Abstract views: 
838
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA San Francisco; Clearwater; Chicago; Los Angeles; Ashburn; Buffalo; Los Angeles; Portland8
Singapore Singapore; Singapore2
Germany Falkenstein; Falkenstein2
Ukraine Uzhhorod; Kremenchuk2
France1
Unknown1
China Shenzhen1
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
18.2.2018 Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis https://journal.yuzhnoye.com/content_2018_2-en/annot_18_2_2018-en/ Thu, 07 Sep 2023 12:20:49 +0000 https://journal.yuzhnoye.com/?page_id=30799
, Meleshko A. M., Meleshko A. M., Meleshko A. M., Meleshko A. M., Meleshko A. M., Meleshko A. M., Meleshko A.
]]>

18. Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 151-156

DOI: https://doi.org/10.33136/stma2018.02.151

Language: Russian

Annotation: Contemporary trends in developing space-rocket hardware indicate the increased demand for light and ultra-light rockets. The first trend in developing the up-to-date light and ultra-light rocket hardware includes improving accuracy of cargo delivery to the specified area; the second trend covers the enhancement of energetic properties and the reduction of production and operational costs. Spinning about the longitudinal axis of symmetry may be one of the ways to improve the light and ultra-light rocket hardware in these trends. Spinning significantly increases stability of a moving object and partially evens out the negative impact of external and internal disturbing factors (skewness and eccentricities of propulsion system and control elements, wind). Refusal to use systems that provide stabilization about the longitudinal axis of symmetry leads to reduction in mass of the control system equipment, thus increasing energetic perfection of the rocket hardware. Hence, rotation of the rocket about the longitudinal axis may be caused by the spinning elements on purpose as well as by disturbing impacts in case of control failure in the roll channel. This article considers suggestions on algorithmic realization of light rocket control methods under conditions of rapid rotation about the longitudinal axis for each of the options mentioned above. This article offers control methods for the rocket, rotating about the longitudinal axis, that provide angular stabilization, improve the transient quality, and determine the angle of roll after program stop of rotation about the longitudinal axis.

Key words: angular stabilization, spinning, rotation about the longitudinal axis of symmetry, light rocket, drive delay, determination of the angle of roll, aerodynamic control surfaces, algorithm for maneuver determination of the angle of roll

Bibliography:
1. Shunkov V. N. Encyclopedia of Rocket Artillery / Under the general editorship of A. E. Taras. Minsk, 2004. 544 p.
2. Igdalov I. M. et al. Rocket as Control Object: Tutorial / Under the editorship of S. N. Konyukhov. Dnepropetrovsk, 2004. 544 p.
3. Pugachyov V. S. et al. Rocket Control Systems and Flight Dynamics. М., 1965. 610 p.
4. Sikharulidze Y. G. Flying Vehicles Dynamics. М., 1982. 352 p.
Downloads: 42
Abstract views: 
974
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Boydton; Plano; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Seattle25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Brisbane;;3
Germany; Falkenstein2
Philippines1
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
18.2.2018 Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis
18.2.2018 Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis
18.2.2018 Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis

Keywords cloud

]]>
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction https://journal.yuzhnoye.com/content_2018_1-en/annot_6_1_2018-en/ Tue, 05 Sep 2023 06:19:12 +0000 https://journal.yuzhnoye.com/?page_id=30454
, Meleshko A. M., Meleshko A. M., Meleshko A. M., Meleshko A. M., Meleshko A. M., Meleshko A. M., Meleshko A.
]]>

6. On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 31-38

DOI: https://doi.org/10.33136/stma2018.01.031

Language: Russian

Annotation: The paper deals with the options of solving the task of constructing an inertial navigation system in the conditions of considerable g-load and angular velocity in identified direction by method of setting the sensitive elements at some angle to the identified direction, which allows making measurements in it without loss of measurement quality in the other directions. The paper describes the technique of calculating the angle of sensitive elements setting to the identified direction. The scheme of constructing an inertial navigation system with incomplete set of sensitive elements is considered for the cases when in entire operation leg, rotation around the identified direction is executed. The analysis is given of measurement vector error due to incompleteness of the sensitive elements set.

Key words:

Bibliography:
1. Shunkov V. N. Encyclopedia of Rocket Artillery / Under the general editorship of A. E. Taras. Minsk, 2004. 544 p.
2. Shirokorad A. B. Encyclopedia of National Artillery / Under the general editorship of A. E. Taras. Minsk: Harvest, 2000. 1156 p.
3. Pugachyov V. S. et al. Rocket Control System and Flight Dynamics / V. S. Pugachyov, I. E. Kazakov, D. I. Gladkov, L. G. Yevlanov, A. F. Mishakov, V. D. Sedov. М., 1965. 610 p.
4. Branets V. N., Shmyglevsky I. P. Use of Quaternions in Solid Body Orientation Problems. М., 1973. 320 p.
5. Borisova A. Y., Smal’ A. V. Analysis of Developments of Gimballess Inertial Navigation Systems. Engineering News. N. E. Bauman MGTU. No. 05. 2017.
Downloads: 44
Abstract views: 
751
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore;; Plano; Miami; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Philippines1
China Pekin1
Finland Helsinki1
Pakistan1
Great Britain London1
France1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
]]>