Search Results for “Moon” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 21:27:19 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Moon” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM https://journal.yuzhnoye.com/content_2024_1-en/annot_11_1_2024-en/ Mon, 17 Jun 2024 08:41:21 +0000 https://journal.yuzhnoye.com/?page_id=35014
It has been proven that the solutions based on using auger conveyors would be most rational for transporting loose lunar regolith over the Moon’s surface because the auger conveyors are compact and adaptable, and they can be placed inside tubes and laid under the day surface, thereby ensuring the continuous transportation process. Key words: Moon , regolith , auger , electric motor , capacity , power Bibliography: 1. Help NASA Design a Robot to Dig on the Moon https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/ 7. Moon Village Association https://moon-villageassociation.org/about/ 10. GLOBAL MOON VILLAGE. https://space-architect.org/portfolio-item/ global-moon-village// 11. New Views of the moon. Moon , regolith , auger , electric motor , capacity , power .
]]>

11. Parameters calculation of the lunar regolith transport system

Organization:

National Academy of Sciences of Ukraine, M.S. Poliakov Institute of geotechnical mechanics1; Ukrainian State University of Science and Technologies2; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2024, (1); 93-101

DOI: https://doi.org/10.33136/stma2024.01.093

Language: Ukrainian

Annotation: The objective of this article is to develop a scientifically proven method of calculation of the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electrical motor, for different densities and porosities of conveyed materials, the geometrical parameters of the auger, and the specificity of the gravitational fields at the place of transportation. Another objective is to investigate potential limitations of the auger parameters when transporting lunar regolith. To reach these objectives, the known relations for calculating the auger conveyor parameters were applied, as well as the fundamental laws of the granular media mechanics, the principal equations of asynchronous motor electrodynamics, and the behavior of granular media when moving it with the auger conveyor, experimentally studied by the domestic authors. It gave the possibility, for the first time for the lunar environment, to suggest a procedure to calculate the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electric motor, using known geometrical parameters of the mainline and pipeline, the auger conveyor filling ratio and the parameters of the selected electrical motor. It gave the possibilities to study how the filling ratio of the auger conveyor influences its principal performance parameters and determine potential limitations of the geometrical parameters and the filling ratios of auger conveyors according to the parameters and features of the selected electrical motor. The allowable transportation distances, diameters, other geometrical parameters of auger conveyors, and conveyor filling ratios with the selected electrical motor have been determined. It has been proven that the solutions based on using auger conveyors would be most rational for transporting loose lunar regolith over the Moon’s surface because the auger conveyors are compact and adaptable, and they can be placed inside tubes and laid under the day surface, thereby ensuring the continuous transportation process. Furthermore, they are capable of autonomous operation and can use the electricity produced by solar arrays.

Key words: Moon, regolith, auger, electric motor, capacity, power

Bibliography:

1. Pustovgarov A. A., Osinoviy G. G. Kontseptsiya shlyuzovogo modulya misyachnoi bazy. ХХV Mizhnarodna molodizhna naukovo-praktychna conf. «Lyudyna i cosmos». Zbirnyk tez, NTsAOM, Dnipro, 2023. S. 86 – 87.
2. Semenenko P. V. Sposoby transortirovki poleznykh iskopaemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviyukh. P. V. Semenenko, D. G. Groshelev, G. G. Osinoviy, Ye. V. Semenenko, N. V. Osadchaya. XVII conf. molodykh vchenykh «Geotechnichni problemy rozrobky rodovysch». m. Dnipro, 24 zhovtnya 2019 r. S. 7.
3. Berdnik A. I. Mnogorazoviy lunniy lander. A. I. Berdnyk, M. D. Kalyapin, Yu. A. Lysenko, T. K. Bugaenko. Raketno-kosmichny complexy. 2019. T. 25. №5:3-10. ISSN 1561-8889. https://doi.org/10.15407/knit2019.05.003
4. Semenenko Ye. V., Osadchaya N. V. Traditsionnye i netraditsionnye vydy energii, a takzhe kosmicheskie poleznye iskopaemye v okolozemnom prostranstve. Nauch.-parakt. conf. «Sovremennye raschetno-experimentalnye metody opredeleniya characteristic raketno-kosmicheskoy techniki». m. Dnipro, 10 – 12 grudnya 2019 r. S. 62 – 63.
5. Komatsu pobudue excavator dlya roboty na Misyatsi https://www.autocentre.ua/ua/ news/concept/komatsu-postroit-ekskavator-dlya-raboty-na-lune-1380272.html.
6. Help NASA Design a Robot to Dig on the Moon https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/
7. Robert E. Grimm. Geophysical constaints on the lunar Procellarum KREEP Terrane. Vol. 118, Issue 4. April 2013. P. 768-778. https://agupubs-onlinelibrary-wiley-com.translate. goog/doi/10.1029/2012JE004114?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc
https://doi.org/10.1029/2012JE004114
8. Chen Li. A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector. Kuixian Wei, Yang Li, Wenhui Ma, Yun Lei, Han Yu, Jianzhong Liu. Journal of Rare Earths Vol. 41, Issue 9, September 2023, P. 1429-1436. https://www-sciencedirect-com.translate.goog/science/article/ abs/pii/S1002072122001910?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc https://doi. org/10.1016/j.jre.2022.07.002
9. Moon Village Association https://moon-villageassociation.org/about/
10. GLOBAL MOON VILLAGE. https://space-architect.org/portfolio-item/ global-moon-village//
11. Just G. H. Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilization (ISRU) and recommendations for future excavation experiments. G. H. Just, Smith K., Joy K. H., Roy M. J. https://doi.org/10.1016/j.pss.2019.104746
https://www.sciencedirect.com/science/article/pii/S003206331930162X
12. Anthony J. Analysis of Lunar Regolith Thermal Energy Storage. Anthony J. Colozza Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio NASA Contractor Report 189073. November 1991. S-9 https://denning.atmos.colostate.edu/readings/ lunar.regolith.heat.transfer.pdf
13. Obgruntuvannya vykorystannya shneka dlya utilizatsii vidkhodiv vuglezbagachennya z mozhlyvistyu pidvyschennya bezpeki energetychnoi systemy pidpriemstv. SLobodyannikova I. L., Podolyak K. K., Tepla T. D. Materialy XХІ Mizhnarod. conf. molodykh vchennykh (26 zhovt. 2023 roku, m. Dnipro). Dnipro: IGTM im. M.S. Polyakova NAN Ukrainy, 2023. S. 50–55.
14. Kulikivskiy V. L., Paliychuk V. K., Borovskiy V. M. Doslidzhennya travmuvannya zerna gvintovym konveerom. Konstryuvannya, vyrobnitstvo ta exspluatatsiya silskogospodarskykh mashin. 2016. Vyp. 46. S. 160 – 165. https://doi.org/10.3233/EPL-46204
14. Lyubin M. V., Tokarchuk O. A., Yaropud V. M. Osoblyvosti roboty krutopokhylennykh gvyntovykh transporterov pri peremischenni zernovoi produktsii. Tekhnika, energetika, transport APK. 216. № 3(95). S. 235 – 240.
15. Gevko R. B., Vitroviy A. O., Pik A. I. Pidvyschennya tekhnichnogo rivnya gnuchkykh gvyntovykh konveeriv. Ternopil: Aston, 2012. 204 s.
16. Bulgakov B. M., Adamchyuk V. V., Nadikto V. T., Trokhanyak O. M. Teoretichne obgruntuvannya parametriv gnuchkogo gvintovogo konveera dlya transportuvannya zernovykh materialiv. Visnyk agrarnoi nauki. 2023. № 4(841). S. 59 – 66.
17. New Views of the moon. Reviews in mineralogy and geochemistry. Eds. Joliff B.L., Wieczorek M.A., Shearer C.K., Neal C.R. Mineralogical Society of America. Reviews in mineralogy and geochemistry. 2006. Vol. 60. 721 p. DOI: 10.2138/rmg.2006.60.
18. Semenenko Ye. V. Nauchnye osnovy technologiy hydromechanizatsii otkrytoy razrabotki titan-cyrkonovykh rossypey. Yevgeniy Vladimirovich Semenenko. Kiev: Nauk. dumka, 2011. 232 s.

Downloads: 21
Abstract views: 
819
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Chicago; Columbus; Ashburn; Los Angeles; San Francisco; Portland; San Mateo; Ashburn; Ashburn9
Germany Falkenstein; Düsseldorf; Falkenstein3
Unknown; Hong Kong2
China Shenzhen; Pekin2
Canada Toronto; Toronto2
France1
Israel Haifa1
Ukraine Kremenchuk1
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
3.1.2024 Future projects of lunar exploration implemented by Yuzhnoye SDO https://journal.yuzhnoye.com/content_2024_1-en/annot_3_1_2024-en/ Wed, 12 Jun 2024 15:28:59 +0000 https://journal.yuzhnoye.com/?page_id=34965
2024, (1); 19-28 DOI: https://doi.org/10.33136/stma2024.01.019 Language: English Annotation: Over the past years, the leading space powers have been returning to the idea of expeditions to the Moon and actively designing and manufacturing components for inhabited lunar bases. Yuzhnoye State Design Office has its own concept of a lunar base and, of course, cannot stand aside from the solution of scientific and technical problems related to the Moon exploration. Specialists of Yuzhnoye SDO completed conceptual development of a significant range of technologies required for the Moon exploration: a space transportation system for lunar expeditions; landers to deliver payloads to the surface of the Moon and transport experimental equipment; mobile laboratories; a reconnaissance rover to provide reconnaissance missions on the surface of the Moon; vehicles to provide lifting and transport, assembly and construction, production and technological and soil extraction work on the surface of the Moon; habitat units and other elements of the lunar infrastructure.
]]>

3. Future projects of lunar exploration implemented by Yuzhnoye SDO

Page: Kosm. teh. Raket. vooruž. 2024, (1); 19-28

DOI: https://doi.org/10.33136/stma2024.01.019

Language: English

Annotation: Over the past years, the leading space powers have been returning to the idea of expeditions to the Moon and actively designing and manufacturing components for inhabited lunar bases. Yuzhnoye State Design Office has its own concept of a lunar base and, of course, cannot stand aside from the solution of scientific and technical problems related to the Moon exploration. Specialists of Yuzhnoye SDO completed conceptual development of a significant range of technologies required for the Moon exploration: a space transportation system for lunar expeditions; landers to deliver payloads to the surface of the Moon and transport experimental equipment; mobile laboratories; a reconnaissance rover to provide reconnaissance missions on the surface of the Moon; vehicles to provide lifting and transport, assembly and construction, production and technological and soil extraction work on the surface of the Moon; habitat units and other elements of the lunar infrastructure. Taking into account the high costs of lunar exploration, it is clear that international cooperation is the most realistic scenario for Yuzhnoye SDO to participate in the exploration. The U.S. lunar program is the most attractive. Private companies that NASA selects for the lunar programs can become partners of Yuzhnoye. With a view to ensuring the participation of Yuzhnoye SDO in international programs, the current state of global technologies for the Moon exploration was analyzed and opportunities to promote technologies developed by Ukrainian specialists on the international market of space technologies were identified based on the analysis. Taking into account the high level of technologies developed by the potential partners, it is proposed for the first time to consider it advisable to promote Yuzhnoye’s technologies with TRL 6–9 which have already been successfully tested and the innovative technologies developed by the company which have no analogues in the world or surpass the world level in terms of their technological and economic performance. Based on the analysis of the Lunar Industrial & Research Base conceptual design, such technologies may include rocket propulsion, units and assemblies of liquid-propellant propulsion (TRL 6–9), as well as future designs such as a hydrogen energy accumulator and inert anodes made of ultra-high-temperature ceramics for electrolysis of regolith melts.

Key words: rocket propulsion, hydrogen energy accumulator, inert anodes.

Bibliography:
1. Rosiya vtratyla “Lunu-25”, India uspishno zavershyla misiu. Chomu krainy ponovyly gonku za resursy Misyatsa? 23 serpnya 2023. https://www.epravda.com.ua/publications/2023/08/23/703510 (Russia lost Luna-25, India successfully completed the mission. Why have countries renewed the race for lunar resources? August 23, 2023. In Ukrainian)
2. Creech S, Guidi J, Elburn D. Artemis: An overview of NASA’s activities to return humans to the Moon. Paper presented at: 2022 IEEE Aerospace Conference (AERO); 2022 Mar 05-12; Big Sky, Montana.
https://doi.org/10.1109/AERO53065.2022.9843277
3. In-Situ Resource Utilization (ISRU) Demonstration Mission, 2019. https://exploration.esa.int/web/moon/-/60127-in-situ-resource-utilisation-demonstration-mission.
4. Peng Zhang, Wei Dai, Ran Niu, Guang Zhang, +12 authors. Overview of the Lunar In Situ Resource Utilization Techniques for Future Lunar Missions. Journal Space: Science & Technology. 2023, Vol. 3, Р. 1-18. Article ID: 0037. DOI: 10.34133/space.0037
https://doi.org/10.34133/space.0037
5. Lin XU, Hui LI, Pei Z, Zou Y, Wang C. A brief introduction to the International Lunar Research Station Program and the Interstellar Express Mission. Chinese J Space Sci. 2022;42(4):511-513.
https://doi.org/10.11728/cjss2022.04.yg28
6. Li C, Wang C, Wei Y, Lin Y. China’s present and future lunar exploration program. Science. 2019;365(6450):238-239.
https://doi.org/10.1126/science.aax9908
7. Ukrinform, 09 sichnya 2024, https://www.ukrinform.ua/rubric-technology/3804665-aponskij-zond-uvijsov-do-orbiti-misaca-pered-posadkou.html (Ukrinform, January 9, 2024. In Ukrainian).
8. Nimechina priednalasya do programmy vyvchennya Misyatsa Artemis, 15.09.2023, https://www.dw.com/uk/nimeccina-priednalas-do-programi-vivcenna-misaca-artemis/a-66826693 (Germany joined the Artemis moon exploration program, September 15, 2023. In Ukrainian).
9. Grigoriev O. N., Frolov G. A., Evdokimenko Yu. I., Kisel’ V. M., Panasyuk A. D., Melakh L. M., Kotenko V. A., Koroteev A. V. Ultravysokotemperaturnaya keramika dlya aviatsionno-kosmicheskoy techniki, Aviatsionno-kosmicheskaya technika i technologiya, 2012, No 8 (95), st.119-128 (O.N. Grigoriev, G.A. Frolov, Yu.I. Evdokimenko, V.M. Kisel, A.D. Panasyuk, L.M. Melakh, V.A. Kotenko, A.V. Koroteev. Ultra-high-temperature ceramics for aerospace engineering, Aerospace engineering and technology, 2012, No. 8 (95), Р. 119-128. In Russian).
10. Grigoriev O. N. et al. Oxidation of ZrB2-SiC-ZrSi2 ceramics in oxygen. Journal of the European Ceramic Society 30 (2010). 2397-2405.
https://doi.org/10.1016/j.jeurceramsoc.2010.03.016
Downloads: 22
Abstract views: 
649
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Buffalo; Los Angeles; Columbus; Buffalo; Ashburn; Ashburn; Portland; San Mateo; Ashburn; Philadelphia11
Germany Falkenstein; Düsseldorf; Falkenstein3
China Shenzhen; Pekin2
Canada Toronto; Toronto2
France1
Unknown1
Ukraine Kremenchuk1
Belgium1
3.1.2024 Future projects of lunar exploration implemented by Yuzhnoye SDO
3.1.2024 Future projects of lunar exploration implemented by Yuzhnoye SDO
3.1.2024 Future projects of lunar exploration implemented by Yuzhnoye SDO

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
Сollected book of scientific-technical articles https://journal.yuzhnoye.com/ Thu, 04 May 2023 07:56:30 +0000 https://enovathemes.com/samatex2/?page_id=41
spaceflight and studies of the Moon and other planets; –
]]>

Collected scientific and technical articles «Космічна техніка. Ракетне озброєння» / «Space technology. Missile armaments» is the specialized professional edition, where new results of the theoretical and experimental research in the rocket and space area are published.

Subject matter of the collected articles covers the issues of creation and operation of the up-to-date missile and space launch systems, spacecraft and satellite systems, as well as their component parts, in particular:
– design and development of the launch-vehicles/integrated launch vehicles, missiles, ground complexes;
– design and development of the components parts for the launch vehicles/integrated launch vehicles, missiles (solid- and liquid-propellants engines, power supply systems, control systems, separation systems, arming etc.);
– design and development of the component parts for the ground complexes (buildings, filling systems, pre-launch processing systems etc.);
– design and development of the spacecraft and their component parts;
– spaceflight and studies of the Moon and other planets;
– materials and up-to-date technologies in the rocket and space technology;
– issues of aerodynamics, heat-mass exchange, flight theory, loading and strength of the structures;
– issues of efficiency, reliability, safety and feasibility of the rocket and space systems;
– other aspects that directly relate to the creation and operation of the rocket and space systems.

The collected articles edition publishes the results of scientific research of the scientists, scholars and research and educational personnel of the scientific institutions and institutions of higher educations to get nominated for the degrees of Candidate of Engineering (Doctor of Philosophy), Doctor of Engineering Sciences and Doctor of Physical and Mathematical Sciences. The collected articles cover the following fields: 134 – Aviation and rocket & space technology; 142 – Power engineering; 151 – Automation and computer-integrated technologies.

About the collected articles

ISSN 2617-5525e-ISSN 2617-5533

obl1

ISSN 2617-5525;
e-ISSN 2617-5533

Until 1993 the collected scientific and technical articles «Космічна техніка. Ракетне озброєння» / «Space technology. Missile armaments» was published under the title of «Calculations, design, development and testing of the ballistic missiles».

Publisher: State Enterprise «Yuzhnoye» State Design Office».

Languages of publication: Ukrainian, English.

Frequency of edition: twice a year.

State registration of the printed media in the Ukraine’s National board for the broadcasting activities: media identifier – R30-01817 of 04.12.2023.

Сollected book of scientific-technical articles
Сollected book of scientific-technical articles
Сollected book of scientific-technical articles
]]>