Search Results for “Oslavsky S. Y.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:23:19 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Oslavsky S. Y.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 6.2.2017 Set of Actions on Enhancement of Launch Vehicle Payload Capability https://journal.yuzhnoye.com/content_2017_2/annot_6_2_2017-en/ Tue, 08 Aug 2023 12:39:31 +0000 https://journal.yuzhnoye.com/?page_id=29754
Ostoslavsky I. Ostoslavsky, I.
]]>

6. Set of Actions on Enhancement of Launch Vehicle Payload Capability

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 29-34

Language: Russian

Annotation: The paper presents a complex of analytical calculation measures that allow increasing tanks useful volume and ensure engines’ additional operational lifetime by the example of a launch vehicle, one of Yuzhnoye SDO developments. The calculated-experimental confirmation is set forth of the operability of pneumohydraulic supply system in the changed conditions that ensure considerable increase of launch vehicle power and mass characteristics.

Key words:

Bibliography:
1. Logvinenko A. I. Development Prospects of Modern LV Pneumohydraulic Systems. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2014. Issue 1. Dnepropetrovsk.
2. Increasing Dnepr LV 1 and 2 Stages Propellant Filling Doses due to Decrease of their Temperature, Initial Gas Volumes in Tanks and Change of Filling Technology: Technical Report 21.16850.123 ОТ / Yuzhnoye SDO. 54 p.
3. Determination of 2 Stage PHSS Operability Limits at Increased RE Autonomous Operation Mode Time (after ME Shutdown): Technical Report 21.16234.123 ОТ / Yuzhnoye SDO. 75 p.
4. Ostoslavsky I. V. Flight Dynamics. Flying Vehicles Trajectories / I. V. Ostoslavsky, I. V. Strazheva. М., 1969. 499 p.
Downloads: 44
Abstract views: 
541
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Matawan; Baltimore;; North Bergen; Plano; Dublin; Columbus; Columbus; Phoenix; Phoenix; Phoenix;; Monroe; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown; Hong Kong2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
6.2.2017 Set of Actions on Enhancement of Launch Vehicle Payload Capability
6.2.2017 Set of Actions on Enhancement of Launch Vehicle Payload Capability
6.2.2017 Set of Actions on Enhancement of Launch Vehicle Payload Capability
]]>
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor https://journal.yuzhnoye.com/content_2019_1-en/annot_18_1_2019-en/ Wed, 24 May 2023 16:00:39 +0000 https://journal.yuzhnoye.com/?page_id=27723
Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor Authors: Oslavsky S. Content 2019 (1) Downloads: 36 Abstract views: 675 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Baltimore; North Bergen; Plano; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn 20 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 10 Unknown Melbourne; 2 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Oslavsky S. Oslavsky S. Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor Автори: Oslavsky S.
]]>

18. Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 122-131

DOI: https://doi.org/10.33136/stma2019.01.122

Language: Russian

Annotation: The basic results of the design calculations and mathematical modelling of the control processes in the precision high-speed servo drive are presented, as well as results of experimental studies of the functional mock-up of this servo drive’s movable gears of the throttle and fuel flow regulator of the ILV main engine. Major task of the studies was theoretical and experimental verification of the required static and dynamic accuracy of the servo drive in the process of try-out of the command signals reception from the main engine’s controller. In the phase of development, theoretical study of the linearized servo drive with application of transformations and theorems of Laplace passages to the limit is conducted. Analytical dependences between servo drive circuit parametres, its elements and characteristics of the control signals are obtained. Instrument errors and servostatic elasticity of the servo drive are calculated. Calculation model including the basic nonlinearities of this servo drive is prepared. Mathematical modelling of the control processes is conducted according to the computational model, varying the circuit and design parameters of the electric drive. Results of the theoretical studies were taken as input data for the requirements specification document to develop the executive unit with the electromotor, reduction gear and output shaft position sensor, and the control box. Functional mockups of the executive unit, control box, as well as the computer-controlled technological test console were manufactured on the basis of the requirements specification documents. The required scope of the laboratory-development tests of the functional mock-up of the servo drive was conducted. Results of the conducted activities confirm the achievement of the required accuracies of the servo drive in the laboratory environment.

Key words: control system, permanent-field synchronous motor, mathematical model, computational analysis

Bibliography:
1. Programma «Mayak», raketa kosmicheskogo naznacheniya, marsheviy dvigatel’ pervoi stupeni: Techn. proekt. Dnepropetrovsk: GP KB «Yuzhnoye», 2015. 490 p.
2. Controller marshevogo dvigatelya pervoi stupeni RKN: Poyasnitelnaya zapiska. Dnepr: GP KB «Yuzhnoye», 2017. 108 p.
3. Marsheviy dvigatel pervoi stupeni RKN: Technicheskoe zadanie na razrabotku electromechanicheskogo privoda mechanizmov drosselya i regulyatora raschoda goryuchego. Dnepr: GP KB «Yuzhnoye», 2016. 68 p.
4. Basharin A. V., Novikov V. A., Sokolovskiy G. G. Upravlenie electroprivodami: Uch. posob. dlya VUZov. L.: Energoizdat, 1982. 392 p.
5. Makarov I. M., Menskiy B. M. Lineinye avtomaticheskie systemy. – 2-e izd., pererab. i dop. M.: Mashinostroenie, 1982. 504 p.
6. Otchet po rezultatam ispytania maketnogo obraztsa electromechanicheskogo privoda mechanizmov drosselya i regulyatora goruchego. Dnepr: GP KB «Yuzhnoye», 2018. 50 p.
Downloads: 36
Abstract views: 
675
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Unknown Melbourne;2
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>