Search Results for “Petrenko Y. M.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:01:40 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Petrenko Y. M.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 1.1.2018 Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests https://journal.yuzhnoye.com/content_2018_1-en/annot_1_1_2018-en/ Mon, 04 Sep 2023 12:33:40 +0000 https://journal.yuzhnoye.com/?page_id=30158
, Petrenko Y. Content 2018 (1) Downloads: 35 Abstract views: 926 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Ashburn; Ashburn; Baltimore; Boydton; Plano; Columbus; Detroit; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn 21 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 7 Philippines Cainta 1 Unknown 1 Türkiye Istanbul 1 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Noskov S. P., Petrenko Y. P., Petrenko Y. P., Petrenko Y. P., Petrenko Y. P., Petrenko Y. P., Petrenko Y.
]]>

1. Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 3-5

DOI: https://doi.org/10.33136/stma2018.01.003

Language: Russian

Annotation: The description of the program and its work on the part of the user is given as well as a description of the software automation solution from the programmer’s side. The introduction of an automated program has significantly accelerated the process of attestation of climatic chambers.

Key words:

Bibliography:
Downloads: 35
Abstract views: 
926
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Ashburn; Baltimore; Boydton; Plano; Columbus; Detroit; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Philippines Cainta1
Unknown1
Türkiye Istanbul1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
1.1.2018 Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests
1.1.2018 Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests
1.1.2018 Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests
]]>
5.1.2017 Development of Working Liquid Discontinuity Measurement Procedure and Its Certification https://journal.yuzhnoye.com/content_2017_1/annot_5_1_2017-en/ Thu, 22 Jun 2023 12:48:29 +0000 https://journal.yuzhnoye.com/?page_id=29374
Development of Working Liquid Discontinuity Measurement Procedure and Its Certification Authors: Bondar’ М. , Petrenko Y. To ensure the uniformity of measurements when reducing this method to practice, the methodology of its certification experimental investigations is proposed for the purpose of determination of its applicability limits. М., Petrenko Y. (2017) "Development of Working Liquid Discontinuity Measurement Procedure and Its Certification" Космическая техника. "Development of Working Liquid Discontinuity Measurement Procedure and Its Certification" Космическая техника. М., Petrenko Y. quot;Development of Working Liquid Discontinuity Measurement Procedure and Its Certification", Космическая техника. М., Petrenko Y. М., Petrenko Y. М., Petrenko Y. М., Petrenko Y.
]]>

5. Development of Working Liquid Discontinuity Measurement Procedure and Its Certification

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 30-34

Language: Russian

Annotation: The method not used before to measure discontinuity of working fluid using video recorders is considered. To ensure the uniformity of measurements when reducing this method to practice, the methodology of its certification experimental investigations is proposed for the purpose of determination of its applicability limits.

Key words:

Bibliography:
Downloads: 33
Abstract views: 
542
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Dublin; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Dnipro2
Unknown Melbourne1
Canada Toronto1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2017 Development of Working Liquid Discontinuity Measurement Procedure and Its Certification
5.1.2017 Development of Working Liquid Discontinuity Measurement Procedure and Its Certification
5.1.2017 Development of Working Liquid Discontinuity Measurement Procedure and Its Certification
]]>
9.2.2016 Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands https://journal.yuzhnoye.com/content_2016_2-en/annot_9_2_2016-en/ Tue, 06 Jun 2023 11:56:39 +0000 https://journal.yuzhnoye.com/?page_id=28319
Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands Authors: Bondar’ М. , Petrenko Y. М., Petrenko Y. (2016) "Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands" Космическая техника. "Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands" Космическая техника. М., Petrenko Y. quot;Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands", Космическая техника. Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands Автори: Bondar’ М. М., Petrenko Y. Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands Автори: Bondar’ М. М., Petrenko Y. М., Petrenko Y. М., Petrenko Y.
]]>

9. Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (2); 60-64

Language: Russian

Annotation: Example of the estimate of the measurement error of the linear accelerations during the free fall of the kinematic model is considered. It was concluded that experiments on error measurements can be replaced with calculations for those parameters which have sufficient initial data on metrological performance of the applied instrumentation.

Key words:

Bibliography:
Downloads: 44
Abstract views: 
470
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Columbus; Ashburn; Boardman; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany; Falkenstein2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Unknown1
France1
Mongolia1
Canada Monreale1
Romania Voluntari1
9.2.2016 Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands
9.2.2016 Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands
9.2.2016 Metrological Support of Kinematic Model Testing on Zero-Gravity Test Stands
]]>
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime https://journal.yuzhnoye.com/content_2019_1-en/annot_5_1_2019-en/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27710
Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime Authors: Hudramovych V. Raschet na prochnost’ detaley machin: spravochnik. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. Petrenko. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. Hudramovych V. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime Автори: Hudramovych V.
]]>

5. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Language: Russian

Annotation: This article contains results of methodology and standards development for life prediction of launch site structures to launch various types’ launch vehicles into near-earth orbit. Launch sites have been built in various countries of the world (European Union, India, China, Korea, Russia, USA, Ukraine, France, Japan, etc.). In different countries they have their own characteristics, depending on the type and performance of the launch vehicles, infrastructure features (geography of the site, nomenclature of the space objects, development level of rocket and space technology), problems that are solved during launches, etc. Solution of various issues, arising in the process of development of the standards for justification of launch site life is associated with the requirement to consider complex problems of strength and life of nonuniform structural elements of launch sites and structures of rocket and space technology. Launch sites are the combination of technologically and functionally interconnected mobile and fixed hardware, controls and facilities, designed to support and carry out all types of operations with integrated launch vehicles. Launch pad, consisting of the support frame, flue duct lining and embedded elements for frame mounting, is one of the principal components of the launcher and to a large extent defines the life of the launch site. Main achievements of Ukrainian scientists in the field of strength and life are specified, taking into account the specifics of various branches of technology. It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Main methodological steps of launch site structures life prediction are defined. Service limit of launch site is suggested to be the critical time or the number of cycles (launches) over this period, after which the specified limiting states are achieved in the dangerous areas of the load-bearing elements: critical cracks, destruction, formation of unacceptable plastic deformations, buckling failure, corrosion propagation, etc. Classification of loads acting on the launch sites is given. The useful life of launch site is associated with estimation of the number of launches. Concept of low and multiple-cycle fatigue is used. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.

Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur

Bibliography:

1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.

Downloads: 48
Abstract views: 
816
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Springfield; Matawan; North Bergen; Plano; Miami; Miami; Miami; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Canada Toronto; Toronto; Monreale3
Unknown Hong Kong;2
Finland Helsinki1
India1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Keywords cloud

]]>