Search Results for “SPRE” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 06 Nov 2024 11:39:45 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “SPRE” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 7.1.2024 Selection of the functional units for the Cyclone-4M ILV separation system https://journal.yuzhnoye.com/content_2024_1-en/annot_7_1_2024-en/ Fri, 14 Jun 2024 11:36:31 +0000 https://journal.yuzhnoye.com/?page_id=34957
pneumatic pusher , spring pusher , SPRE , gas-reactive nozzles , Zenit LV , Dnepr LV , Falcon 9 rocket , Cyclone-4М LV. pneumatic pusher , spring pusher , SPRE , gas-reactive nozzles , Zenit LV , Dnepr LV , Falcon 9 rocket , Cyclone-4М LV.
]]>

7. Selection of the functional units for the Cyclone-4M ILV separation system

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 61-71

DOI: https://doi.org/10.33136/stma2024.01.061

Language: Ukrainian

Annotation: Separation of the spent LV stages is one of the important problems of the rocket technology, which requires the comprehensive analysis of different types of systems, evaluation of their parameters and structural layouts. Basic requirements are specified that need to be taken into account when engineering the separation system: reliable and safe separation, minimal losses in payload capability, keeping sufficient distance between the stages at the moment of the propulsion system start. Detailed classification of their types («cold», «warm», «hot», «cold-launched» separation) is given and their technical substance with advantages and drawbacks is described. Certain types of «cold» and «warm» separation of the spent stages of such rockets as Dnepr, Zenit, Antares, Falcon-9 with different operating principle are introduced – braking with the spent stage and pushing apart two stages. Brief characteristics of these systems are given, based on the gas-reactive nozzle thrust, braking with solid-propellant rocket engines, separating with spring or pneumatic pushers. Development of the separation system for the advanced Cyclone-4M ILV is taken as an example and design sequence of stage separation is suggested: determination of the necessary separation velocity and capability of the separation units, determination of the number of active units, calculation of design and energy parameters of the separation units, analysis of the obtained results followed by the selection of the separation system. Use of empirical dependences is shown, based on the great scope of experimental and theoretical activities in the process of design, functional testing and flight operation of similar systems in such rockets as Cyclone, Dnepr and Zenit. According to the comparative analysis results, pneumatic separation system to separate Cyclone-4M Stages 1 and 2 was selected as the most effective one. Its basic characteristics, composition, overall view and configuration are specified. Stated materials are of methodological nature and can be used to engineer the separation systems for LV stages, payload fairings, spacecraft etc.

Key words: separation system, functional units of separation, «cold separation», «warm separation», pneumatic pusher, spring pusher, SPRE, gas-reactive nozzles, Zenit LV, Dnepr LV, Falcon 9 rocket, Cyclone-4М LV.

Bibliography:
  1. Pankratov Yu. , Novikov A. V., Tatarevsky K. E., Azanov I. B. Dynamika perekhodnykh processov. 2014.
  2. Sinyukov A. M., Morozov N. I. Konstruktsia upravlyaemykh ballisticheskykh raket. 1969.
  3. Kabakova Zh. V., Kuda S. A., Logvinenko A. I., Khomyak V. A. Opyt razrabotki pneumosystemy dlya otdelenita golovnogo aerodynamicheskogo obtekatelya. Kosmicheskaya technika. Raketnoe vooruzhenie. 2017. Vyp. 2 (114).
  4. Kolesnikov K. S., Kozlov V. V., Kokushkin V. V. Dynamika razdeleniya stupeney letatelnykh apparatov. 1977.
  5. Antares – Spaceflight Insider: web site. URL: https://www. Spaceflightinsider.com/missions/iss/ng-18-cygnus-cargo-ship-to-launch-new-science-to-iss/Antares (data zvernennya 30.10.2023).
  6. Falcon 9 – pexels: website. URL: https://www. pexels.com/Falcon 9 (data zvernennya 31.10.2023).
  7. Kolesnikov K. , Kokushkin V. V., Borzykh S. V., Pankova N. V. Raschet i proektirovanie system razdeleniya stupeney raket. 2006.
  8. Cyclone-4M – website URL: https://www.yuzhnote.com (data zvernennya 31.10.2023)
  9. Logvinenko A. Sozdanie gasoreaktivnykh system otdeleniya i uvoda otrabotavshykh stupeney – noviy shag v RKT. Kosmicheskaya tekhnika. Raketnoe vooruzhenie, KBU, NKAU, vyp. 1, 2001.
  10. Logvinenko A. I., Porubaimekh V. I., Duplischeva O. M. Sovremennye metody ispytaniy system i elementov konstruktsiy letatelnykh apparatov. Monografia. Dnepr, KBU, 2018.
Downloads: 14
Abstract views: 
1159
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Chicago; Chicago; Buffalo; Buffalo; Ashburn; San Francisco; Los Angeles; Portland8
Germany Falkenstein; Falkenstein2
France1
Unknown1
China Shenzhen1
Ukraine Kremenchuk1
7.1.2024 Selection of the functional units for  the Cyclone-4M ILV separation system
7.1.2024 Selection of the functional units for  the Cyclone-4M ILV separation system
7.1.2024 Selection of the functional units for  the Cyclone-4M ILV separation system

Keywords cloud

]]>
12.1.2020 Modification of technology as the main course in the military transport aircraft development https://journal.yuzhnoye.com/content_2020_1-en/annot_12_1_2020-en/ Wed, 13 Sep 2023 10:54:55 +0000 https://journal.yuzhnoye.com/?page_id=31043
2020, (1); 114-120 DOI: https://doi.org/10.33136/stma2020.01.114 Language: Russian Annotation: The process of creating modifications of aircraft in the transport category is a very relevant and widespread phenomenon in modern aircraft construction.
]]>

12. Modification of technology as the main course in the military transport aircraft development

Authors:

Los’ O. V.

Organization:

Antоnov Company, Kyiv, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 114-120

DOI: https://doi.org/10.33136/stma2020.01.114

Language: Russian

Annotation: The process of creating modifications of aircraft in the transport category is a very relevant and widespread phenomenon in modern aircraft construction. A separate group of military transport aircraft has been distinguished in connection with the specific character of their mission: – the need to formulate the characteristics “cargo – range” for light, medium, operational tactical and strategic military transport aircraft, since it is precisely according to this characteristic that they are positioned by their purpose; –specific requirements are imposed on military transport aircraft cargo compartment not only with respect to its geometrical dimensions and usable volume, but also with respect to the possibility of simultaneous accommodation of military equipment and people, as well as the placement of a stretcher with t he wounded during their evacuation from the war zone; – the possibility of airborne landing of military equipment and paratroopers, which requires specific hatches and means of maintaining weight balance in flight; – the possibility of basing on poorly prepared sites with a runway length of less than 800 m in the short take-off and landing (STL) mode, especially for operational tactical military-technical vehicles, which significantly expands their use in combat zones; – the possibility of conversion into a civilian aircraft: for the delivery of goods to areas of the far north, when fighting fires, when evacuating victims from disaster zones, etc. The article shows that creation of modifications of expensive military transport aircraft is the main direction of their development. All leading aircraft manufacturing companies in the world use modification procedures as the way to most quickly meet constantly changing requirements for military transport aircraft. Along with the traditional methods of designing the modifications, the domestic school proposed a new methodology for determining the necessary parameters for “deep” modifications in wing geometry and propulsion system. The methodology is based on the use of three principles: – ensuring growth of carrying capacity and the required range of modifications of military transport aircraft of various purposes; – geometric re-arrangement of wing and system of carrying surfaces “wing + tail units” according to the criterion of minimum inductive resistance when lifting forces are equal to basic version; – coordination of modifications in wing with the required parameters of propulsion system as a condition for ensuring the required fuel efficiency.

Key words: military transport aircraft, hallmarks of military transport aircraft modifications, principles of designing military transport aircraft modifications

Bibliography:
1. Krivov G. А. Mirovaia aviatsiia na rubezhe ХХ – ХХI stoletii. Promyshlennost, rynki. Kiev, 2003. 295 s.
2. Andrienko Yu. G. Metod formirovaniia sovokupnosti tekhniko-ekonomicheskikh kharakteristik v protsedure vybora proektnykh reshenii pri razrabotke transportnykh samoletov. Otkrytye informatsionnye i kompiuternye tekhnologii: sb. nauch. tr. NAU im. N. Е. Zhukovskogo “KhAI”. Kharkiv, 2002. Vyp. 12. С. 125–138.
3. Sheinin V. М. Rol’ modifikatsii v razvitii aviatsionnoi tekhniki. 1983. 226 s.
4. Babenko Yu. V. Metodika stoimostnoi otsenki modifikatsii blizhnemagistralnykh passazhirskikh samoletov. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia: sb. nauch. tr. NAU im. N. Е. Zhukovskogo “KhAI”. Kharkiv, 2015. Vyp. 7(126). S. 145–149.
5. Los’ А. V. Poniatie koeffitsienta elliptichnosti trapetsievidnogo kryla i metod ego otsenki. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia: sb. nauch. tr. NAU im. N. Е. Zhukovskogo “KhAI”. Kharkiv, 2019. Vyp. 9. S. 9–15.
Downloads: 39
Abstract views: 
978
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan;;; Boydton; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Pakistan Rawalpindi1
Cambodia Phnom Penh1
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
12.1.2020  Modification of technology as the main course in the military transport aircraft development
12.1.2020  Modification of technology as the main course in the military transport aircraft development
12.1.2020  Modification of technology as the main course in the military transport aircraft development

Keywords cloud

]]>
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight https://journal.yuzhnoye.com/content_2020_1-en/annot_6_1_2020-en/ Wed, 13 Sep 2023 06:19:43 +0000 https://journal.yuzhnoye.com/?page_id=31028
Due to somewhat different satellite orbiting periods, the distances between them in flight direction continuously change, different precession motion of orbital planes determines their angular spread – approach in flight. It was determined that maximal probability of approach of whatever pair of satellites of cluster to small distances is the case if in some neighborhood of numbers of their flight orbits, simultaneously two events are realized – the satellites approach to minimal distances in flight direction and angular spread of their orb ital planes is close to zero. Organization uniform dispersal for group of small satellites after their separation and acceptable spread at stages of their further approaches. Organization uniform dispersal for group of small satellites after their separation and acceptable spread at stages of their further approaches.
]]>

6. Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 57-75

DOI: https://doi.org/10.33136/stma2020.01.057

Language: Russian

Annotation: The methods are proposed (analytical and numerical based on motion equations integration) to evaluate probability of first approaches to small distances of satellites of cluster uncontrolled in flight in long time intervals. As the number of satellites injected into area of one base orbit grows, the necessity of evaluating such probability constantly increases – already at present their number in some cases exceeds hundred units. In flight, such satellites form in limited area of space rather compact cluster; the satellite density in such cluster exceeds by many orders the density of operating space objects at their functioning altitudes. Due to somewhat different satellite orbiting periods, the distances between them in flight direction continuously change, different precession motion of orbital planes determines their angular spread – approach in flight. It was determined that maximal probability of approach of whatever pair of satellites of cluster to small distances is the case if in some neighborhood of numbers of their flight orbits, simultaneously two events are realized – the satellites approach to minimal distances in flight direction and angular spread of their orb ital planes is close to zero. The conditions are determined of separation of whatever two satellites of cluster (their separation directions and velocities) – that ensure simultaneous realization of the above events in some neighborhood of number of flight orbits. The analytical relations were obtained that allow determining the corresponding numerical values of satellite approach parameters. For particular case – satellite separation at the equator – maximal probability of approach of two satellites of cluster to small distances is the case when their relative separation velocities are equal in flight direction and in perpendicular to this direction. For the option of injecting 12 satellites to the area of one base orbit of ~ 650 km altitude and  98 inclination, the parameters of satellites separation at the equator were determined that realize their uniform dispersion in the first orbits of autonomous flight. For 2 pairs (out of 66 formed for considered injection case) the conditions of maximal probability of their first approaches to small distances are realized. Using two developed methods evaluations of such probability were obtained.

Key words: mutually relative motion of the satellite cluster, sun-synchronous orbits, satellites approach probability

Bibliography:
1. Venttsel’ Е. S. Teoriia veroiatnostei. М., 1958. 464 s.
2. Gerasiuta N. F., Lebedev А. А. Ballistika raket. М., 1970. 244 s.
3. GOST 25645, 115-84. Model’ plotnosti dlia ballisticheskogo obespecheniia poletov ISZ. М., 1985.
4. Degtyarev A. V., Sheptun A. D. Proektno-ballisticheskie resheniia po gruppovym zapuskam kosmicheskikh apparatov v raion neskolkikh bazovykh orbit. Kosmicheskaia tekhnika. Raketnoe vooruzhenie. 2011. Vyp. 2. S. 37–51.
5. Degtyarev A. V., Sheptun A. D., Vorobiova I. A. Organizatsiia ravnomernogo raskhozhdeniia gruppirovki malykh sputnikov posle otdeleniia i ikh priemlemogo razneseniia na etapakh posleduiushchikh sblizhenii. Kosmichna nauka i tekhnologiia. 2016. № 3. S. 25–31. https://doi.org/10.15407/knit2016.03.025
6. Kugaenko B. V., Eliasberg P. E. Evoliutsiia pochti krugovykh orbit ISZ pod vliianiem zonalnykh garmonik. Kosmicheskie issledovaniia. 1968. Vyp. 2. S. 186–202.
7. Degtyarev O. V., Denysov V. І., Shchehol’ V. А., Degtyarenko P. H., Nesterov О. V., Mashtak І. V., Sheptun А. D., Avchynnikov І. K., Sirenko V. М., Tatarevsky K. Е. Sposib pidhotovky ta provedennia hrupovogo zapusky suputnykiv u kosmosi odniieiu paketoiu: pat. Ukrainy № 87290. Opubl. 10.02.2014.
8. Eliasberg P. E. Vvedenie v teoriiu poleta iskusstvennykh sputnikov Zemli. М., 1965. 540 s.
9. Eliasberg P. E. i dr. Dvizhenie iskusstvennykh sputnikov v gravitatsionnom pole Zemli. М., 1967. 299 s.
10. Degtyarev A., Vorobiova I., Sheptun A. Organization uniform dispersal for group of small satellites after their separation and acceptable spread at stages of their further approaches. Amer. J. Aerospace Eng. 2015. № 2. P. 36–42. https://doi.org/10.11648/j.ajae.20150205.11
11. Vorobiova I., Sheptun A. Organization uniform dispersal for group of small satellites after their separation and acceptable spread at stages of their further approaches. IAC-15-B4.5.11. Jerusalem, 2015. P. 4–9.
Downloads: 33
Abstract views: 
792
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; San Mateo; San Mateo; Des Moines; Boardman; Ashburn17
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
India Mumbai1
Cambodia Phnom Penh1
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight

Keywords cloud

]]>
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing https://journal.yuzhnoye.com/content_2020_1-en/annot_4_1_2020-en/ Wed, 13 Sep 2023 05:51:26 +0000 https://journal.yuzhnoye.com/?page_id=31024
The known terminal guidance method, which has recently become widespread, is based on a highly accurate prediction of motion parameters and, in this regard, has little promise.
]]>

4. Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 34-43

DOI: https://doi.org/10.33136/stma2020.01.034

Language: Russian

Annotation: High-precision guidance of supersonic flying vehicles maneuvering while descending in the atmosphere with high degree of thermal protection ablation is a well-known problem of space ballistics. The existing methods for calculating the ablation of thermal protection and the subsequent calculation of aerodynamic characteristics lead to scatter of the landing points of a flying vehicle reaching 5 km or more. The functional guidance method, in principle, allows achieving the required guidance accuracy (hundreds of meters), however, it requires a reserve of power of the controls at a level 50% to counter the influence of disturbing factors. The known terminal guidance method, which has recently become widespread, is based on a highly accurate prediction of motion parameters and, in this regard, has little promise. The method has been described in the article that allows 15-20-fold reducing the flight range scatters caused by lack of knowledge (including due to coating ablation) of its current aerodynamic characteristics and ensuring that the accumulated lateral deviation is counteracted in the limit to 1-1.5 km. The method is applicable to the flying vehicles with weight asymmetry (“transverse” displacement of the center of mass), performing maneuvering under conditions of aerodynamic balancing. The method is based on the solution to increase the accuracy of hits by spinning the shells around longitudinal axis. It is proposed that when a flying vehicle moves in the dive mode by means of the onboard CVC, it is regular (at intervals) to calculate its flight path in the (conditionally) autorotation mode. Based on the results of processing single calculations, the corresponding flight ranges of a flying vehicle and the lateral displacement of the touchdown points are determined, the point in time is predicted at which the flight range of the flying vehicle is equal to the specified one and the average lateral deviation is determined. At this moment the angular movement of the flying vehicle is transferred to the autorotation mode. Counteraction of the lateral displacement is introduced by adjusting the half-periods of flying vehicle movement along the angle of the precession. An example of pointing a flying vehicle at a given range, and bringing it to the touchdown point, shifted to the right relative to the original flight path by 1 km. The error of the terminal guidance of a maneuvering while reducing the aircraft using the proposed guidance method is determined.

Key words: angular motion of flying vehicle; touchdown point, methodological error of guidance, guidance of maneuvering supersonic flying vehicle

Bibliography:
1. Eliasberg P. Е. Vvedenie v teoriiu poleta iskusstvennykh sputnikov Zemli. М., 1965. 540 s.
2. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
3. Levin A. S., Mashtak I. V., Sheptun А. D. Dinamika manevrirovaniia v atmosphere LA s vesovoi asimmetriei i elementami terminalnogo upravleniia na uchastke razvorota. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. statei / GP “KB “Yuzhnoye”. Dnipro, 2019. Vyp. 1. S. 4–14. https://doi.org/10.33136/stma2019.01.004
4. Chandler D. C., Smith I. E. Development of the iterative guidance mode with is application to varies vehicles and missions. Journal of Spacecraft and Rockets. 1967. Vol 1.4, №7. P. 898-903. https://doi.org/10.2514/3.28985
Downloads: 37
Abstract views: 
789
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Columbus; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown;2
Ukraine Dnipro;2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing

Keywords cloud

]]>
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases https://journal.yuzhnoye.com/content_2019_1-en/annot_3_1_2019-en/ Thu, 25 May 2023 12:09:10 +0000 https://journal.yuzhnoye.com/?page_id=27708
Among the methods of synthesis of the automatic control linear systems developed to date one can emphasize the trend, which has become widely-spread in the engineering area.
]]>

3. Analysis of Spacecraft Control Issues In Early Design Phases

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 15-20

DOI: https://doi.org/10.33136/stma2019.01.015

Language: Russian

Annotation: Mission control of the orbital space plane is one of the actual and complicated applied problems of the theory of mobile objects control. Dynamic configuration of this plane as an object of control is described by the system of non-linear differential equations of higher order. Research of stability of such system is a difficult problem. However, thanks to known theorems of Lyapunov, often stability of the real system can be estimated by the roots of the characteristic equation of the linearized system. Thereupon the stability analysis in the linear setting is the necessary link in the process of orbital space plane control system development. Among the methods of synthesis of the automatic control linear systems developed to date one can emphasize the trend, which has become widely-spread in the engineering area. According to this trend the issues of synthesis of the dynamic regulator, observability and controllability for the orbital space plane are considered. Procedure of selection of the dynamic regulator parameters at the early phase of development of the control system for the orbital space plane motion about the center of mass is suggested. Observability and controllability of the orbital space plane are considered. It is shown that the considered control system of the orbital space plane is observable and controllable, i.e. it is possible to develop the stable dynamic regulator, which provides the required speed and accuracy of the angular position of the orbital space plane during the orbital flight. Factors selection procedure is offered for the factors being the part of the control laws for the control system actuators.

Key words: vector, matrix, dynamic regulator, observability, controllability, stability

Bibliography:

1. Isenberg Ya. Ye., Sukhorebriy V. G. Proektirovanie sistem stabilizatsii nositeley kosmicheskikh apparatov. M.: Mashinostroenie, 1986. 220 p.
2. Kuzovkov N. T. Modalnoe upravlenie i nabludauschie ustroistva. M.: Mashinostroenie, 1976. 184 p.
3. Krasovskiy N. N. Teoria upravlenia dvizheniem. M.: Nauka, 1968. 475 p.
4. Larson Wiley J. and Wertz James R. (editors). Space mission analysis and design. Published Jointly by Microcosm, Inc. (Torrance, California) Kluwer Academic Publishers (Dordrecht / Boston / London), 1992. 865 p.
5. Sidi Marcel J. Spececraft Dynamics and Control. A Practical Engineering Approach. Israel Aircraft Industries Ltd. and Tel Aviv University. Cambridge University press, 1997. 409 p.

Downloads: 47
Abstract views: 
591
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Redmond; Plano; Columbus; Ashburn; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland;; San Mateo; Boydton; Boydton; Boydton; Boydton; Boydton; Boydton; Des Moines; Boardman; Boardman; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Unknown Sidney;2
Romania; Voluntari2
Belgium Brussels1
Finland Helsinki1
France1
Canada Monreale1
Germany Falkenstein1
Netherlands Amsterdam1
Ukraine Dnipro1
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
2.1.2019 Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg https://journal.yuzhnoye.com/content_2019_1-en/annot_2_1_2019-en/ Thu, 25 May 2023 12:09:03 +0000 https://journal.yuzhnoye.com/?page_id=27707
2019, (1); 4-14 DOI: https://doi.org/10.33136/stma2019.01.004 Language: Russian Annotation: This paper suggests method for analysis of the dynamics of the aircraft with weight asymmetry (transverse displacement of the center of mass) maneuvering in the atmosphere under the impact of the short-time alternating moment of engine thrust, spread out over a period. Under the influence of disturbances, the spread of the aircraft angular motion parameters increases, mainly at the angle of precession, which characterizes changes in the direction of maneuvering. Composition of disturbances includes the spread of the aircraft technical characteristics (position of the center of mass, moments of inertia, aerodynamic coefficients, velocity head, etc.), errors associated with the operation of the engines (thrust spread, time of ignition and shutdown, angular alignment of their longitudinal axes). proper rotation , spread of technical characteristics of the aircraft Bibliography: 1.
]]>

2. Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 4-14

DOI: https://doi.org/10.33136/stma2019.01.004

Language: Russian

Annotation: This paper suggests method for analysis of the dynamics of the aircraft with weight asymmetry (transverse displacement of the center of mass) maneuvering in the atmosphere under the impact of the short-time alternating moment of engine thrust, spread out over a period. The engines are installed on the bottom of the aircraft at the maximum distance from its longitudinal axis. Angular motion with nominal and perturbed performances of the aircraft and flight conditions has been consistently considered. Before maneuvering, the aircraft is set at the trimming angle of attack, determined by the magnitude of transverse displacement of the center of mass and aerodynamic characteristics. The direction of the aircraft maneuvering in the atmosphere depends on the acting moments of forces and time diversity of the engine firings to speed up and shutdown the angular motion. In the absence of disturbances, the angular motion of the aircraft shows in part signs of regular precession (almost constant precession velocity and nutation angle) and autorotation (close to zero self-rotation angle). Under the influence of disturbances, the spread of the aircraft angular motion parameters increases, mainly at the angle of precession, which characterizes changes in the direction of maneuvering. Composition of disturbances includes the spread of the aircraft technical characteristics (position of the center of mass, moments of inertia, aerodynamic coefficients, velocity head, etc.), errors associated with the operation of the engines (thrust spread, time of ignition and shutdown, angular alignment of their longitudinal axes). Terminal control was introduced to realize the given final state and to reduce the disturbances impact on the maneuvering parameters based on the registered deviations of the angular motion from the nominal one after the first shutdown of the attitude maneuver engine. Monte Carlo method (1000 variations of random realizations of the acting perturbations) confirmed the effectiveness of the proposed terminal control of the angular motion of the aircraft to provide the specified maneuvering parameters.

Key words: angular motion, angles of precession, nutation (attack), proper rotation, spread of technical characteristics of the aircraft

Bibliography:

1. Lebedev A. A., Gerasuta N. F. Ballistika raket. M.: Mashinostroenie, 1970. 244 p.
2. Buchgolz N. N. Osnovnoy kurs teoreticheskoi mechaniki. Ch. 2. M.: Nauka, 1972. 332 p.
3. Aslanov V. S. Prostranstvennoe dvizhenie tela pri spuske v atmosfere. M.: Fizmatlit, 2004. 160 p.
4. Gukov V. V., Kirilinko P. P., Mareev Y. A., Samarskiy A. M., Chernov V. V. Osnovy teorii poleta letatelnykh apparatov. M.: MAI, 1978. 70 p.
5.Teoretychni osnovy poletu kosmichnykh apparativ. Ministerstvo oborony Ukrainy, 2000. 180 p.

Downloads: 44
Abstract views: 
583
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Ashburn; Columbus; Monroe; Ashburn; Ashburn; Seattle; Tappahannock; Boydton; Boydton; Portland; San Mateo; San Mateo; San Mateo; Boydton; Boydton; Boydton; Boydton; Boydton; Boydton; Des Moines; Boardman; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
China Shanghai1
Belgium Brussels1
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
2.1.2019 Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg
2.1.2019 Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg
2.1.2019 Flying Vehicle Maneuvering Dynamics in Atmosphere with Weight Asymmetry and Elements of Terminal Control in Turn Leg

Keywords cloud

]]>
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests https://journal.yuzhnoye.com/content_2023_1-en/annot_6_1_2023-en/ Fri, 12 May 2023 16:10:51 +0000 https://test8.yuzhnoye.com/?page_id=26990
2023 (1); 56-62 DOI: https://doi.org/10.33136/stma2023.01.056 Language: Ukrainian Annotation: This article dwells on results of firing bench testing of the solid-propellant rocket engine (SPRE), fastened to the thrust-measuring assembly stand. It is shown that when engine enters the steady-state mode of operation, plane (forward and rotation) vibrations of the SPRE can take place in the assembly stand due to the sudden pattern of thrust generation and displacement of the center of mass of the vibrating system from the engine axis. Elastic force vibrations in thrust-measuring system with vibrating system parameters were simulated including variant of thrust change versus time, implemented during firing bench tests of one of the SPRE.
]]>

6. Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 56-62

DOI: https://doi.org/10.33136/stma2023.01.056

Language: Ukrainian

Annotation: This article dwells on results of firing bench testing of the solid-propellant rocket engine (SPRE), fastened to the thrust-measuring assembly stand. It is shown that when engine enters the steady-state mode of operation, plane (forward and rotation) vibrations of the SPRE can take place in the assembly stand due to the sudden pattern of thrust generation and displacement of the center of mass of the vibrating system from the engine axis. These vibrations distort measured values of engine thrust and pattern of its change versus time. The purpose of this work is to simulate the oscillating processes of the engine atop the assembly stand to single out in the distorted values of the measured thrust the components related to the processes in the engine and components, which are introduced into the thrust measurement by the oscillating processes in the system “assembly stand – engine”. Model of vibrating system is suggested, which consists of two rigidly connected bodies, containing elastic links, enabling forward and rotary motion and limited by the rigidity of the links. Mathematical model of the vibrating system is developed. Internal forces and moments acting in oscillatory system are defined. Method of numerical simulation of plane vibrations within the limits of the developed model is suggested. Plane vibrating motion and elastic force curve (curve based on force sensor readings) were simulated in thrust-measuring system for different cases of thrust curve and values of vibrating system parameters. Resonance condition was simulated and mutual influence of elastic parametrical link between forward and rotary vibrations was established. Impact of thrust-measuring system rigidity on peak values of force sensor readings was found out. Elastic force vibrations in thrust-measuring system with vibrating system parameters were simulated including variant of thrust change versus time, implemented during firing bench tests of one of the SPRE. It is shown that registered simulation results recreate thrust measurement results in pattern and values obtained by the force sensor during the firing bench tests, and owing to this, it was concluded that oscillating process parameters, assumed in the model, meet the actual ones. It is concluded that simulation provides objective interpretation of the thrust curve, reliable and comprehensive analysis of engine run during firing bench tests, more detailed and exact design of the assembly stand.

Key words: vibrating system, plane vibrations, forward vibrations, rotary vibrations, resonance, thrust measurement

Bibliography:

1. Beskrovniy I. B., Kirichenko A. S., Balitskiy I. P. i dr. Opyt predpriyatia po proektirovaniyu i ekspluatatsii stapeley dlya ispytaniy RDTT. Kosmicheskays technika. Raketnoye vooruzhennie: Sb. nauch.-techn. st. 2008. Vyp. 1. Dnepropetrovsk: GP «KB «Yuzhnoye». S. 119–127.
2. Lysenko M. T., Rogulin V. V., Beskrovniy I. B., Kalnysh R. V. Modelyuvannya kolyvann RDTP u stapeli, scho vynykaut pid chas VSV. Kosmicheskays technika. Raketnoye vooruzhennie: Sb. nauch.-techn. st. 2019. Vyp. 1. Dnepropetrovsk: GP «KB «Yuzhnoye».
3. Beskrovniy I. B., Lysenko M. T., Gergel V. G. Kolyvalnni processy u stapeli v moment vyhodu RDTP na ustalenniy rezhim roboty. Kosmicheskay technika. Raketnoye vooruzhennie: Sb. nauch.-techn. st. 2019. Vyp. 1. Dnepropetrovsk: GP «KB «Yuzhnoye».

Downloads: 3
Abstract views: 
771
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Seattle1
Singapore Singapore1
Germany Falkenstein1
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>