Search Results for “Semenenko P. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 10:54:51 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Semenenko P. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles https://journal.yuzhnoye.com/content_2018_2-en/annot_19_2_2018-en/ Thu, 07 Sep 2023 12:23:58 +0000 https://journal.yuzhnoye.com/?page_id=30801
V., Semenenko P.
]]>

19. Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 157-172

DOI: https://doi.org/10.33136/stma2018.02.157

Language: Russian

Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. Formal use of this approach can lead to unpredictable consequences. More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data. The sampling rates of the main controlled parameters are three to ten times higher than the frequency range of their changing. Therefore, it is possible to determine the characteristics of the random error components directly on the basis of registered data. The unrevealed systematic components create the basic uncertainty in the evaluation of the examined parameter’s total measurement error. To evaluate the precision and measurement accuracy of a particular launch, the article suggests specifying the preliminary data on measurement error components determined during prelaunch processing and launch. Basic structures of algorithms for evaluation of precision and measurement accuracy for certain mathematical models that form the measured parameters were considered along with the practical case when static correlation existed among the measured parameters.

Key words: flight tests, sensor, measurement error, mathematical model

Bibliography:
1. Novitsky P. V., Zograf I. A. Evaluation of Measurement Errors. L., 1985. 248 p.
2. Shmutzer E. Relativity Theory. Modern Conception. Way to Unity of Physics. М., 1981. 230 p.
3. Blekhman I. I., Myshkis A. D., Panovenko Y. G. Applied Mathematics: Subject, Logic, Peculiarities of Approaches. К., 1976. 270 p.
4. Moiseyev N. N. Mathematical Problems of System Analysis. М., 1981. 488 p.
5. Bryson A., Ho Yu-Shi. Applied Theory of Optimal Control. М., 1972. 544 p.
6. Yevlanov L. G. Monitoring of Dynamic Systems. М., 1972. 424 p.
7. Sergiyenko A. B. Digital Signal Processing: Collection of publications. 2011. 768 p.
8. Braslavsky D. A., Petrov V. V. Precision of Measuring Devices. М., 1976. 312 p.
9. Glinchenko A. S. Digital Signal Processing: Course of lectures. Krasnoyarsk, 2008. 242 p.
10. Garmanov A. V. Practice of Optimization of Signal-Noise Ratio at ACP Connection in Real Conditions. М., 2002. 9 p.
11. Denosenko V. V., Khalyavko A. N. Interference Protection of Sensors and Connecting Wires of Industrial Automation Systems. SТА. No. 1. 2001. P. 68-75.
12. Garmanov A. V. Connection of Measuring Instruments. Solution of Electric Compatibility and Interference Protection Problems. М., 2003. 41 p.
13. TP ACS Encyclopedia. bookASUTR.ru.
14. Smolyak S. A., Titarenko B. P. Stable Estimation Methods. М., 1980. 208 p.
15. Fomin A. F. et al. Rejection of Abnormal Measurement Results. М., 1985. 200 p.
16. Medich J. Statistically Optimal Linear Estimations and Control. М., 1973. 440 p.
17. Sage E., Mells J. Estimation Theory and its Application in Communication and Control. М., 1976. 496 p.
18. Filtration and Stochastic Control in Dynamic Systems: Collection of articles / Under the editorship of K. T. Leondes. М., 1980. 408 p.
19. Krinetsky E. I. et al. Flight Tests of Rockets and Spacecraft. М., 1979. 464 p.
20. Viduyev N. G., Grigorenko A. G. Mathematical Processing of Geodesic Measurements. К., 1978. 376 p.
21. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied Statistics. Investigation of Dependencies. М., 1985. 487 p.
22. Sirenko V. N., Il’yenko P. V., Semenenko P. V. Use of Statistic Approaches in Analysis of Gas Dynamic Parameters in LV Vented Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. Issue 1. P. 43-47.
23. Granovsky V. A., Siraya T. N. Methods of Experimental Data Processing at Measurements. L., 1990. 288 p.
24. Zhovinsky A. N., Zhovinsky V. N. Engineering Express Analysis of Random Processes. М., 1979. 112 p.
25. Anishchenko V. A. Control of Authenticity of Duplicated Measurements in Uncertainty Conditions. University News. Minsk, 2010. No. 2. P. 11-18.
26. Anishchenko V. A. Reliability and Accuracy of Triple Measurements of Analog Technological Variables. University News. Minsk, 2017. No. 2. P. 108-117.
27. Shenk H. Theory of Engineering Experiment. М., 1972. 381 p.
28. Bessonov А. А., Sverdlov L. Z. Methods of Statistic Analysis of Automatic Devices Errors. L., 1974. 144 p.
29. Pugachyov V. N. Combined Methods to Determine Probabilistic Characteristics. М., 1973. 256 p. https://doi.org/10.21122/1029-7448-2017-60-2-108-117
30. Gandin L. S., Kagan R. L. Statistic Methods of Meteorological Data Interpretation. L., 1976. 360 p.
31. Zheleznov I. G., Semyonov G. P. Combined Estimation of Complex Systems Characteristics. М., 1976. 52 p.
32. Vt222М Absolute Pressure Sensor: ТU Vt2.832.075TU. Penza, 1983.
Downloads: 16
Abstract views: 
504
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro1
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
18.2.2017 Development Test of Payload Fairing Separation Dynamics under Ground Conditions https://journal.yuzhnoye.com/content_2017_2/annot_18_2_2017-en/ Wed, 09 Aug 2023 12:19:09 +0000 https://journal.yuzhnoye.com/?page_id=29858
Fundamentals of Spacecraft Launch Vehicles Designing / Under the editorship of V. Flying Vehicles Stages Separation Dynamics. Semenenko, E. Petrushevsky et al. (2017) "Development Test of Payload Fairing Separation Dynamics under Ground Conditions" Космическая техника. "Development Test of Payload Fairing Separation Dynamics under Ground Conditions" Космическая техника. quot;Development Test of Payload Fairing Separation Dynamics under Ground Conditions", Космическая техника. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX на сайт ДП «КБ «Південне»
]]>

18. Development Test of Payload Fairing Separation Dynamics under Ground Conditions

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 102-106

Language: Russian

Annotation: The paper presents the original test methods with simulation of axial loads nx<< 1 and nx >>1 and the test stands which were used on testing the Zenit-2 ILV large-sized nose fairing.

Key words:

Bibliography:
1. Fundamentals of Spacecraft Launch Vehicles Designing / Under the editorship of V. P. Mishin. М., 1991. 415 p.
2. Kolesnikov K. S., Kozlov V. V., Kokushkin V. V. Flying Vehicles Stages Separation Dynamics. М., 1977. 224 p.
3. Аuthor’s Certificate 285792. Stand for Testing Rocket Fairing Separation in Ground Conditions / O. A. Semenenko, E. I. Shevtsov, V. A. Gontarovsky, V. A. Petrushevsky et al. Claimed 10.05.1989.
4. Аuthor’s Certificate 323879. Method of g-Loads Simulation during Testing of Separation Systems of Cylindrical-Conical Fairing that Separates into Doors / E. I. Shevtsov, V. A. Gontarovsky et al. Claimed 07.02.1989.
Downloads: 20
Abstract views: 
134
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Seattle; Portland; San Mateo; Boardman10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro; Dnipro2
18.2.2017 Development Test of Payload Fairing Separation Dynamics under Ground Conditions
18.2.2017 Development Test of Payload Fairing Separation Dynamics under Ground Conditions
18.2.2017 Development Test of Payload Fairing Separation Dynamics under Ground Conditions
]]>
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays https://journal.yuzhnoye.com/content_2017_1/annot_7_1_2017-en/ Tue, 27 Jun 2023 12:14:44 +0000 https://journal.yuzhnoye.com/?page_id=29425
V., Semenenko P. V., Semenenko P. V., Semenenko P. V., Semenenko P. V., Semenenko P. V., Semenenko P.
]]>

7. Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 43-47

Language: Russian

Annotation: The methodology is proposed of probabilistic assessment of fulfilment of the requirements to gas dynamic parameters in launch vehicle vented bays in the cases when it is impossible to categorically ensure satisfaction of all limitations. By the example of Zenit LV it is shown that when using the statistic assessment, it is possible to considerably expand the launch vehicles application field from the viewpoint of ensuring required conditions in the spacecraft area.

Key words:

Bibliography:
1. Calculation of Venting Parameters in Zenit-3SL ILV Bays PLB, US and IB in Injection Leg. Zenit-3SL 21.13651.122 ОТ: Technical Report. Dnipropetrovsk, 1998. 104 p.
2. Verification of Gas Dynamic and Design Parameters of Thermostating System and Globalstar SC X-Panels Local Blow off System: Report on research work / NASU ITM No12-12/97. 1997. 79 p.
3. Idelchik I. E. Guide on Hydraulic Resistances / Under the editorship of M. O. Steinberg. 3rd edition revised and enlarged. М., 1992. 672 p.
4. Kremer N. Sh. Theory of Probability and Mathematical Statistics: Tutorial. М., 2010. 551 p.
5. Zenit-3SL Integrated Launch Vehicle. Zenit-2S Launch Vehicle. Aerodynamic Analysis. P. 1. Materials on Aero Gas Dynamics. Book 5. Zenit-2S / Thuraya Р01.05: RBD Materials. Dnipropetrovsk, 2000. 120 p.
Downloads: 17
Abstract views: 
165
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Monroe; Ashburn; Seattle; Seattle; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro; Dnipro2
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays
]]>