Search Results for “Sheiko А. F.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 20:23:10 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Sheiko А. F.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight https://journal.yuzhnoye.com/content_2024_1-en/annot_5_1_2024-en/ Thu, 13 Jun 2024 06:00:42 +0000 https://journal.yuzhnoye.com/?page_id=34981
, Sheiko А. H., Sheiko А. (2024) "Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight" Космическая техника. "Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight" Космическая техника. H., Sheiko А. Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight Автори: Hladkyi E. H., Sheiko А. Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight Автори: Hladkyi E. H., Sheiko А. Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight Автори: Hladkyi E. H., Sheiko А. Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight Автори: Hladkyi E. H., Sheiko А.
]]>

5. Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Page: Kosm. teh. Raket. vooruž. 2024, (1); 40-50

DOI: https://doi.org/10.33136/stma2024.01.040

Language: English

Annotation: Despite stringent environmental requirements, modern launch vehicles/integrated launch vehicles (LV/ILV) burn toxic propellants such as NTO and UDMH. Typically, such propellants are used in the LV/ILV upper stages, where a small amount of propellant is contained; however, some LV/ILV still use such fuel in all sustainer propulsion stages. For launch vehicles containing toxic rocket propellants, flight accidents may result in the failed launch vehicle falling to the Earth’s surface, forming large zones of chemical damage to people (the zones may exceed blast and fire zones). This is typical for accidents occurring in the first stage flight segment, when an intact launch vehicle or its components (usually individual stages) with rocket propellants will reach the Earth’s surface. An explosion and fire following such an impact will most likely lead to a massive release of toxicant and contamination of the surface air. An accident during the flight segment of the LV/ILV first stage with toxic rocket propellants, equipped with a flight termination system that implements emergency engine shutdown in case of detection of an emergency situation, has been considered. To assess the risk of toxic damage to a person located at a certain point, it is necessary to mathematically describe the zone within which a potential impact of the failed LV/ILV will entail toxic damage to the person (the so-called zone of dangerous impact of the failed LV/ILV). The complexity of this lies in the need to take into account the characteristics of the atmosphere, primarily the wind. Using the zone of toxic damage to people during the fall of the failed launch vehicle, which is proposed to be represented by a combination of two figures: a semicircle and a half-ellipse, the corresponding zone of dangerous impact of the failed LV/ILV is constructed. Taking into account the difficulties of writing the analytical expressions for these figures during the transition to the launch coordinate system and further integration when identifying the risk, in practical calculations we propose to approximate the zone of dangerous impact of the failed LV/ILV using a polygon. This allows using a known procedure to identify risks. A generalization of the developed model for identifying the risk of toxic damage to people involves taking into account various types of critical failures that can lead to the fall of the failed LV/ILV, and blocking emergency engine shutdown during the initial flight phase. A zone dangerous for people was constructed using the proposed model for the case of the failure of the Dnepr launch vehicle, where the risks of toxic damage exceed the permissible level (10–6). The resulting danger zone significantly exceeds the danger zone caused by the damaging effect of the blast wave. Directions for further improvement of the model are shown, related to taking into account the real distribution of the toxicant in the atmosphere and a person’s exposure to a certain toxic dose.

Key words: launch vehicle, critical failure, flight accident, zone of toxic damage to people, zone of dangerous impact of the failed launch vehicle, risk of toxic damage to people.

Bibliography:
  1. Hladkiy E. H. Protsedura otsenky poletnoy bezopasnosti raket-nositeley, ispolzuyuschaya geometricheskoe predstavlenie zony porazheniya obiekta v vide mnogougolnika. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2015. Vyp. 3. S. 50 – 56. [Hladkyi E. Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2015. Issue 3. Р. 50 – 56. (in Russian)].
  2. Hladkiy E. H., Perlik V. I. Vybor interval vremeni blokirovki avariynogo vyklucheniya dvigatelya na nachalnom uchastke poleta pervoy stupeni. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-tech. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2011. Vyp. 2. s. 266 – 280. [Hladkyi E., Perlik V. Selection of time interval for blocking of emergency engine cut off in the initial flight leg of first stage. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2011. Issue 2. Р. 266 – 280. (in Russian)].
  3. Hladkiy E. H., Perlik V. I. Matematicheskie modeli otsenki riska dlya nazemnykh obiektov pri puskakh raket-nositeley. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2010. Vyp. 2. S. 3 – 19. [Hladkyi E., Perlik V. Mathematic models for evaluation of risk for ground objects during launches of launch-vehicles. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2010. Issue 2. P. 3 – 19. (in Russian)].
  4. NPAOP 0.00-1.66-13. Pravila bezpeki pid chas povodzhennya z vybukhovymy materialamy promyslovogo pryznachennya. Nabrav chynnosti 13.08.2013. 184 s [Safety rules for handling explosive substances for industrial purposes. Consummated 13.08.2013. 184 p.
    (in Ukranian)].
  5. AFSCPMAN 91-710 RangeSafetyUserRequirements. Vol. 1. 2016 [Internet resource]. Link : http://static.e-publishing.af.mil/production/1/afspc/publicating/
    afspcman91-710v1/afspcman91-710. V. 1. pdf.
  6. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 417 – Launch Safety, 2023 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-417.
  7. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 420 License to Operate a Launch Site. 2022 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-420.
  8. ISO 14620-1:2018 Space systems – Safety requirements. Part 1: System safety.
  9. 9 GOST 12.1.005-88. Systema standartov bezopasnosti truda. Obschie sanitarno-gigienicheskie trebovaniya k vozdukhu rabochei zony. [GOST 12.1.005-88. Labor safety standards system. General sanitary and hygienic requirements to air of working zone].
  10. 10 Rukovodyaschiy material po likvidatsii avarijnykh bolshykh prolivov okislitelya АТ (АК) i goruchego NDMG. L.:GIPKh, 1981, 172 s. [Guidelines on elimination of large spillages of oxidizer NTO and fuel UDMH. L.:GIPH, 1981, 172 p. (in Russian)].
  11. 11 Kolichestvennaya otsenka riska chimicheskykh avariy. Kolodkin V. M., Murin A. V., Petrov A. K., Gorskiy V. G. Pod red. Kolodkina V. M. Izhevsk: Izdatelskiy dom «Udmurtskiy universitet», 2001. 228 s. [Quantitative risk assessment of accident at chemical plant. Kolodkin V., Murin A., Petrov A., Gorskiy V. Edited by Kolodkin V. Izhevsk: Udmurtsk’s University. Publish house, 2001. 228 p. (in Russian)].
Downloads: 39
Abstract views: 
957
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Buffalo; Buffalo; Las Vegas; San Jose; Chicago; Chicago; Saint Louis; Saint Louis;; New York City; Buffalo; Buffalo; Buffalo; Buffalo; Los Angeles; Chicago; Dallas; New Haven; New Haven; Buffalo; Phoenix; Chicago; San Francisco; Los Angeles; San Francisco; Portland27
Germany Falkenstein; Düsseldorf; Falkenstein3
Singapore Singapore; Singapore2
Canada Toronto; Toronto2
France1
Unknown1
China Shenzhen1
Romania1
Ukraine Kremenchuk1
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Keywords cloud

]]>
7.1.2018 Prospective Gas Purification Device for LRE Test Bench https://journal.yuzhnoye.com/content_2018_1-en/annot_7_1_2018-en/ Tue, 05 Sep 2023 06:22:22 +0000 https://journal.yuzhnoye.com/?page_id=30456
Prospective Gas Purification Device for LRE Test Bench Authors: Sheiko А. Plano; Columbus; Detroit; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman 25 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Germany Frankfurt am Main; Falkenstein 2 Finland Helsinki 1 Unknown 1 Indonesia Jakarta 1 Canada Monreale 1 Romania Voluntari 1 Netherlands Amsterdam 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Sheiko А. Prospective Gas Purification Device for LRE Test Bench Автори: Sheiko А. Prospective Gas Purification Device for LRE Test Bench Автори: Sheiko А. Prospective Gas Purification Device for LRE Test Bench Автори: Sheiko А. Prospective Gas Purification Device for LRE Test Bench Автори: Sheiko А.
]]>

7. Prospective Gas Purification Device for LRE Test Bench

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 39-45

DOI: https://doi.org/10.33136/stma2018.01.039

Language: Russian

Annotation: The paper considers the project of prospective integrated gas purification device for large-sized LRE test stand. The prognostic mathematical models are presented for evaluation of ecological indices of the integrated gas purification equipment.

Key words:

Bibliography:
1. Sokolov E. Y., Zinger N. M. Jet Devices. 3rd edition, revised. М., 1989. 352 p.
2. Abramovich G. N. Applied Gas Dynamics. In 2 parts. Part 1: Study guide for technical universities. 3rd edition, revised and enlarged. М., 1991. 600 p.
3. MODELING OF CHEMICAL AND PHASE EQUILIBRIUMS AT HIGH TEMPERATURES (ACTPA.4 рс). Version1:16. Description of Use. М., 1996. 51 p.
4. Gusev N. G., Belyayev V. A. Radioactive Emissions in Biosphere. М., 1991. 255 p.
5. Noise Control in Industry: Guide / Under the general editorship of E. Y. Yudin. М., 1985. 400 p.
6. Calculation and Measurement of Characteristics of Noise Created in Far Acoustic Field by Jet Aircraft / Under the editorship of L. I. Sorokin. М., 1968. 100 p.
7. GOST 31295.2-2005. Noise. Sound Attenuation at Propagation on Terrain. P. 2. General Calculation Method. 35 p.
Downloads: 40
Abstract views: 
627
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore;;; Plano; Columbus; Detroit; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Germany Frankfurt am Main; Falkenstein2
Finland Helsinki1
Unknown1
Indonesia Jakarta1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
7.1.2018 Prospective Gas Purification Device for LRE Test Bench
7.1.2018 Prospective Gas Purification Device for LRE Test Bench
7.1.2018 Prospective Gas Purification Device for LRE Test Bench
]]>
11.1.2017 Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors https://journal.yuzhnoye.com/content_2017_1/annot_11_1_2017-en/ Wed, 28 Jun 2023 12:21:35 +0000 https://journal.yuzhnoye.com/?page_id=29442
, Sheiko А. V., Sheiko А. (2017) "Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors" Космическая техника. "Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors" Космическая техника. V., Sheiko А. Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors Автори: Sokolov O. V., Sheiko А. Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors Автори: Sokolov O. V., Sheiko А. Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors Автори: Sokolov O. V., Sheiko А. Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors Автори: Sokolov O. V., Sheiko А.
]]>

11. Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 70-77

Language: Russian

Annotation: The mathematical models are presented and the calculations are made of lower atmosphere contamination with solid propellant combustion products, noise and thermal effects on environment in the test bench area. Based on earlier field investigations and on the results obtained, the assessment is given of ecological safety of the tests.

Key words:

Bibliography:
1. Noise Control in Industry: Guide / Under the editorship of E. Y. Yudin. М., 1985.
2. Maximum Permissible Concentrations and Approximate Safe Levels of Contaminating Substances Effect in Atmospheric Air of Populated Areas. Donetsk, 2000.
3. GOST 12.1.005-88. System of Labor Safety Standards. General Sanitary-Hygienic Requirements to Working Area Air / Collection of GOSTs. М., 1988.
4. Gusev N. G., Belyayev V. A. Radioactive Emissions in Biosphere: Guide. 2nd edition. M., 1991. 256 p.
5. Investigation of Environment Pollution during Tests of 365-Type Article on PMZ Site: Report on research work / MPO Technokhim, NPO GIPH. Leningrad, 1991.
6. Assessment of Hygienic Situation in the Area of Pavlograd Mechanical Plant during Tests of 15D365 Articles. Report by Agreement No48-6/91-429 YuR-1/Ministry of Health Protection of the USSR. M., 1991.
Downloads: 44
Abstract views: 
419
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Columbus; Ashburn; Phoenix; Phoenix; Monroe; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Seattle24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany; Falkenstein2
Ukraine Dnipro; Dnipro2
Canada Toronto; Monreale2
Finland Helsinki1
Unknown1
Great Britain London1
Mongolia1
Romania Voluntari1
11.1.2017 Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors
11.1.2017 Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors
11.1.2017 Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors
]]>