Search Results for “Shevchenko A. A.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 13:02:47 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Shevchenko A. A.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 18.1.2020 Development of autonomous power engineering systems with hydrogen energy storage https://journal.yuzhnoye.com/content_2020_1-en/annot_18_1_2020-en/ Wed, 13 Sep 2023 11:57:42 +0000 https://journal.yuzhnoye.com/?page_id=31056
Development of autonomous power engineering systems with hydrogen energy storage Authors: Shevchenko A. Shevchenko A. О., Shevchenko A. M., Shevchenko A. A., Shevchenko A. Content 2020 (1) Downloads: 42 Abstract views: 1600 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Matawan; Baltimore; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn 24 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 8 Vietnam 1 Finland Helsinki 1 Unknown 1 Mongolia 1 Canada Monreale 1 Germany Falkenstein 1 Latvia Riga 1 Romania Voluntari 1 Netherlands Amsterdam 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Shevchenko A.
]]>

18. Development of autonomous power engineering systems with hydrogen energy storage

Organization:

Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 160-169

DOI: https://doi.org/10.33136/stma2020.01.160

Language: Russian

Annotation: The article analyzes the energy potential of alternative sources of Ukraine. The projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling automobile vehicles located in areas with high solar radiation potential, are considered. During the operation of water desalination plants using a solar power station as an energy source, contingencies are very likely to arise due to either a power outage (due to cloudy weather) or an emergency failure of individual elements of the system. In this case, it is required to ensure its removal from service without loss of technological capabilities (operability). For this purpose, it is necessary to provide for the inclusion in the technological scheme of the energy technological complex of an additional element that ensures operation of the unit for a given time, determined by the regulations for its operation. As such an element, a buffer system based on a hydrogen energy storage device is proposed. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. N. Podgorny of the National Academy of Sciences of Ukraine allows producing and accumulating the hydrogen under high pressure, which eliminates the use of compressor technology.

Key words: alternative energy sources, hydrogen, solar energy, hydrogen generator

Bibliography:
1. Syvolapov V. Potentsial vidnovliuvanykh dzherel enerhii v Ukraini. Agroexpert. 2016. № 12 (101). S. 74–77.
2. Züttel A., Remhof A., Borgschulte A., Friedrichs O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. № 368(1923). Р. 3329–3342. https://doi.org/10.1098/rsta.2010.0113
3. Vozobnovliaemaia energetika. URL: https://nv.ua/tags/vozobnovljaemaja-enerhetika.htmt (access date: 27.01.2020).
4. Sherif S. A., Barbir F., Veziroglu T. N. Wind energy and the hydrogen economy-review of the technology. Solar energy. 2005. № 78(5). P. 647–660. https://doi.org/10.1016/j.solener.2005.01.002
5. Schlapbach L. Technology: Hydrogen-fuelled vehicles. Nature. 2009. № 460(7257). P. 809. https://doi.org/10.1038/460809a
6. Shevchenko A. A., Zipunnikov M. М., Kotenko А. L., Vorobiova I. O., Semykin V. M. Study of the Influence of Operating Conditions on High Pressure Electrolyzer Efficiency. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 53–60. https://doi.org/10.15407/pmach2019.04.053
7. Clarke R. E., Giddey S., Ciacchi F. T., Badwal S. P. S., Paul B., Andrews J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy. 2009. № 34(6). P. 2531–2542. https://doi.org/10.1016/j.ijhydene.2009.01.053
8. Kunusch C., Puleston P. F., Mayosky M. A., Riera J. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Transactions on Control Systems Technology. 2009. № 17(1). P. 167–174. https://doi.org/10.1109/TCST.2008.922504
9. Mazloomi K., Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012. № 16. P. 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028
10. Sharma S., Ghoshal S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015. № 43. P. 1151–1158. https://doi.org/10.1016/j.rser.2014.11.093
11. Prystrii dlia oderzhannia vodniu vysokoho tysku: pat. 103681 Ukraina: MPK6 S 25V 1/12 / V. V. Solovey, A. A. Shevchenko, A. L. Kotenko, O. О. Makarov (Ukrajina). № 2011 15332; zajavl. 26.12.2011; opubl. 10.07.2013, Biul. № 21. 4 s.
12. Shevchenko А. А. Ispolzovanie ELAELov v avtonomnykh energoustanovkakh, kharakterizuyushchikhsia neravnomernostju energopostupleniia. Aviatsionno-kosmicheskaia tekhnika i technologiia: sb. nauch. tr. 1999. Vyp. 13. S. 111–116.
13. Solovey V. V., Zhirov А. S., Shevchenko А. А. Vliianie rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniia. Sovershenstvovaniie turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniia: sb. nauch. tr. 2003. S. 250–254.
14. Solovey V., Kozak L., Shevchenko A., Zipunnikov M., Campbell R., Seamon F. Hydrogen technology of energy storage making use of windpower potential. Problemy Mashinostroyeniya. Journal of Mechanical Engineering. 2017. Vol. 20, № 1. P. 62–68. https://doi.org/10.17721/fujcV6I2P73-79
15. Solovey V. V., Kotenko А. L., Vorobiova I. О., Shevchenko A. А., Zipunnikov M. М. Osnovnye printsipy raboty i algoritm upravleniya bezmembrannym elektrolizerom vysokogo davleniia. Problemy mashinostroyeniia. 2018. T. 21, №. 4. S. 57–63. https://doi.org/10.15407/pmach2018.04.057
16. Solovey V., Khiem N. T., Zipunnikov M. M., Shevchenko A. A. Improvement of the Membraneless Electrolysis Technology for Hydrogen and Oxygen Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 2. P. 73–79. https://doi.org/10.17721/fujcV6I2P73-79
17. Solovey V., Zipunnikov N., Shevchenko A., Vorobjova I., Kotenko A. Energy Effective Membrane-less Technology for High Pressure Hydrogen Electro-chemical Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 1. P.151–156. https://doi.org/10.17721/fujcV6I1P151-156
18. Solovey V. V., Zipunnikov М. М., Shevchenko А. А., Vorobiova І. О., Semykin V. M. Bezmembrannyi henerator vodniu vysokoho tysku. Fundamentalni aspekty vidnovliuvano-vodnevoi enerhetyky i palyvno-komirchanykh technologij / za zahal. red. Yu. М. Solonina. Kyiv, 2018. S. 99–107.
19. Matsevytyi Yu. M., Chorna N. A., Shevchenko A. A. Development of a Perspective Metal Hydride Energy Accumulation System Based on Fuel Cells for Wind Energetics. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 48–52. https://doi.org/10.15407/pmach2019.04.048
20. Phillips R., Edwards A., Rome B., Jones D. R., Dunnill C. W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy. 2017. № 42. P. 23986–23994. https://doi.org/10.1016/j.ijhydene.2017.07.184
Downloads: 42
Abstract views: 
1600
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Vietnam1
Finland Helsinki1
Unknown1
Mongolia1
Canada Monreale1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall https://journal.yuzhnoye.com/content_2018_2-en/annot_7_2_2018-en/ Thu, 07 Sep 2023 11:12:23 +0000 https://journal.yuzhnoye.com/?page_id=30754
Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall Authors: Konokh V. 1 , Shevchenko S. Shevchenko S. Shevchenko S. Shevchenko S. Shevchenko S. Shevchenko S. Refinement of Invariant Method for Calculation of Gas Dynamic Parameters in Rocket Engine Starting Pneumatic System Pipelines. I., Shevchenko S. A., Grigor’ev O. (2018) "Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall" Космическая техника. Space technology. Missile armaments , ( Available at: https://doi.org/10.33136/stma2018.02.057 . "Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall" Космическая техника. Space technology. Missile armaments , no. I., Shevchenko S. I., Shevchenko S. I., Shevchenko S. I., Shevchenko S. I., Shevchenko S.
]]>

7. Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 57-67

DOI: https://doi.org/10.33136/stma2018.02.057

Language: Russian

Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. The article presents the results of experiments and the task of theoretical justification of the effect is solved. It is indicated that its causes may be two mutually complementary factors – a decrease of gas compressibility at eddy motion and oscillations of metal hose wall. The physical model is considered that describes variation of gas elasticity and density in the conditions of high flow vorticity. It is supposed that in the near-wall layer of the channel, toroidal vortexes (vortex rings) are formed, which move into turbulent core of the flow where their size decreases and the velocity of rotation around the ring axis of torus increases. The spiral shape of the corrugation ensures also axial rotation, which increases vortexes stability. The intensive rotation around the ring axis creates considerable centrifugal forces; as a result, the dependence of pressure on gas density and the sound speed increase. The mathematical model has been developed that describes coupled longitudinal-lateral oscillations of gas and channel’s corrugated shell. It is indicated that in the investigated system, two mutually influencing wave types are present – longitudinal, which mainly transfer gas pressure pulses along the channel and lateral ones, which transfer the shell radial deformation pulses. As a result of modeling, it has been ascertained that because of the lateral oscillations of the wall, the propagation rate of gas pressure longitudinal waves (having the same wave length as in the experiments at test bench) turns out to be higher than adiabatic sound speed.

Key words: rocket engine automatic units, pneumatic test bench, metal hose, corrugated shell, toroidal vortex, longitudinal-lateral oscillations

Bibliography:
1. Shevchenko S. A. Experimental Investigation of Dynamic Characteristics of Gas Pressure Regulator in Multiple Ignition LRE Starting System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 49-68.
2. Shevchenko S. A., Valivakhin S. A. Results of Mathematical Modeling of Transient Processes in Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 39 (1082). P. 198-206.
3. Shevchenko S. A., Valivakhin S. A. Mathematical Model of Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 38 (1061). P. 195-209.
4. Shevchenko S. A., Konokh V. I., Makoter A. P. Gas Dynamic Resistance and Sound Speed in Channel with Corrugated Wall. NTU “KhPI” News. 2016. No. 20 (1192). P. 94-101.
5. Flexible Metal Hoses. Catalogue. Ufimsky Aggregate Company “Hydraulics”, 2001.
6. Loytsyansky L.G. Liquid and Gas Mechanics. М., 1978. 736 p.
7. Prisnyakov V. F. et al. Determination of Gas Parameters at Vessel Emptying Taking into Account Compressibility and Manifold Resistance. Problems of High-Temperature Engineering: Collection of scientific works. 1981. P. 86-94.
8. Kirillin V. A., Sychyov V. V., Sheydlin A. E. Technical Thermodynamics. М., 2008. 486 p.
9. Grekhov L. V., Ivashchenko N. A., Markov V. A. Propellant Equipment and Control Systems of Diesels. М., 2004. 344 p.
10. Sychyov V. V., Vasserman A. A., Kozlov A. D. et al. Thermodynamic Properties of Air. М., 1978. 276 p.
11. Shariff K., Leonard A. Vortex rings. Annu. Rev. Fluid Mech. 1992. Vol. 24. P. 235-279. https://doi.org/10.1146/annurev.fl.24.010192.001315
12. Saffman F. Vortex Dynamics. М., 2000. 376 p.
13. Akhmetov D. G. Formation and Basic Parameters of Vortex Rings. Applied Mechanics and Theoretical Physics. 2001. Vol. 42, No 5. P. 70–83.
14. Shevchenko S. A., Grigor’yev A. L., Stepanov M. S. Refinement of Invariant Method for Calculation of Gas Dynamic Parameters in Rocket Engine Starting Pneumatic System Pipelines. NTU “KhPI” News. 2015. No. 6 (1115). P. 156-181.
Downloads: 37
Abstract views: 
1313
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Ashburn; Matawan; Plano; Columbus; Phoenix; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
Unknown Brisbane1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Uzbekistan Tashkent1
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Keywords cloud

]]>
4.2.2017 Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics https://journal.yuzhnoye.com/content_2017_2/annot_4_2_2017-en/ Tue, 08 Aug 2023 12:33:25 +0000 https://journal.yuzhnoye.com/?page_id=29746
Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics Authors: Logvinenko A. Shevchenko, Y. (2017) "Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics" Космическая техника. Space technology. Missile armaments , ( Available at: . "Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics" Космическая техника. Space technology. Missile armaments , no. Logvinenko A. quot;Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics", Космическая техника. Missile armaments, vol.
]]>

4. Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 19-24

Language: Russian

Annotation: The main directions of upgrading the pneumohydraulic systems are considered. Some methods of increasing their operability and reliability are analyzed.

Key words:

Bibliography:
1. Belyayev N. M. Rocket Propellant Tanks Pressurization Systems. М., 1976.
2. Kozlov A. A., Novikov V. N., Solov’yov E. V. Liquid Rocket Propulsion Systems Feeding and Control Systems. М., 1988.
3. Patent 51806, Ukraine, MPK В64Д 37/00. Rocket Propellant Tank Pressurization Method / B. A. Shevchenko, Y. A. Mitikov, А. I. Logvinenko (Ukraine). Applicant and patent holder Yuzhnoye SDO. No. 2000031474; Claimed 15.03.2002; Published 16.12.2002, Bulletin No. 12.
4. Patent 72330, Ukraine, MPK F02K 9/44, F02K 11/00. Method of Propellant Residues Utilization in Liquid Rocket Propulsion System / G. M. Ivanitsky, S. N. Kubanov, А. I. Logvinenko, G. I. Yushin (Ukraine); Applicant and patent holder Yuzhnoye SDO. No. 200210267; Claimed 16.12.2002; Published 15.02.2005, Bulletin No. 2.
5. Logvinenko A. I. Evolution Tendencies of LV Propellant Tanks Pressurization Systems. Paper presentation at IAA Congress (Fukuoka, Japan, October 2005). Dnepropetrovsk, 2005.
6. Mashchenko A. N., Logvinenko A. I. Passivation of LV Upper Stages Propellant Systems: Effective Means of Space Debris Control. Paper presentation at IAA Congress (Hyderabad, India, October 2007). Dnepropetrovsk, 2007.
Downloads: 39
Abstract views: 
267
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Columbus; Ashburn; Seattle; Tappahannock; Portland; Portland; Portland;; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Canada Toronto; Monreale2
Ukraine Dnipro; Dnipro2
China Pekin1
Finland Helsinki1
Unknown1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
4.2.2017 Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics
4.2.2017 Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics
4.2.2017 Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics
]]>
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles https://journal.yuzhnoye.com/content_2019_2-en/annot_5_2_2019-en/ Mon, 15 May 2023 15:45:40 +0000 https://journal.yuzhnoye.com/?page_id=27207
A., Shevchenko B.
]]>

5. Features of the development testing of the propellants deposition inside the tanks of launch vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 35-41

DOI: https://doi.org/10.33136/stma2019.02.035

Language: Russian

Annotation: When accomplishing the task of spacecraft orbital injection, the necessity arises of main engine multiple ignitions and consequently, long pauses between the ignitions are possible. As the propellant during pauses between ignitions is in the conditions of practically full absence of gravitation and can freely move over entire tank volume taking practically any spatial position, to ensure main engine guaranteed ignition the necessity arises to move the propellant into pre-start position. The propellant is moved to the supply lines by way of creating longitudinal acceleration which is done using inertial continuity ensuring means (thrusters). The time of full liquid displacement from one position into another is the most important parameter having an impact on propellant amount in the tanks and accordingly, on power characteristics of a stage. The theoretical calculations of hydrodynamic processes are connected with considerable mathematical difficulties caused by complexity of solving hydrodynamic problems of determination of liquid flowing with free surface taking into account surface tension of the liquid and many other geometrical, kinematic, and dynamic factors. Therefore, the most reliable data from solving these problems are currently obtained only on model hydrodynamic stands where it is possible to model liquid behavior in tanks in the conditions of variable gravitation. The paper presents the authors-developed procedure of calculating the full time required for propellant components deposition during rocket’s apogee stage flight and the procedure of selecting the modeling parameters (scale, time, and acсeleration) to ensure development testing in the conditions of limited test stand base. The use of the proposed procedure allows (in initial phase of launch vehicle development) determining the full time required to perform deposition with sufficient accuracy and thus optimizing the propellant mass required for operation of inertial continuity ensuring system, which in its turn, will allow increasing the payload mass to be injected.

Key words: propellant deposition, zero-gravity stand, hydrodynamic similarity, damping and separation

Bibliography:
1. Masica W. J., Petrash D. A. Motion of liquid-vapor interface in response to imposed acceleration. Lewis Research Center. NASA TN D-3005. 1965. 24 р.
2. Masica W. J., Petrash D. A., Otto E. W. Hydrostatic stability of liquid-vapor interface in the gravitational field. Lewis Research Center. NASA TN D-2267. 1964. 18 р.
3. Glyuk D. F., Jill D. P. Hydromechanika podachi topliva v dvigatelnoy systeme kosmicheskogo korablya v sostoyanii nevesomosti. Konstruirovanie i technologiya machinostroeniya. 1965. T. 87. S. 1–10.
4. Birdge G. V., Blackmon J. B. et al. Analiticheskiy podkhod k proektirovaniyusystem povtornoy zapravke na orbite. Sbornik perevodov. GONTI-4. 1970. S. 56–111.
5. Woss D. E., Hattis P. D. Problema upravleniya istecheniem v processe zapravki bakov Space Shuttle zhidkimi komponentami na okolozemnoy orbite. Astronavtika i raketodynamika. 1986. № 7. S. 8–19.
6. Sedykh I. V., Smolenskiy D. E. Eksperimentalnoe podtverzhdenie rabotosposobnosti capillyrnogo zabornogo ustroistva pri otdelenii kosmicheskogo apparata. Mekhanika gyroskopicheskikh system. 2017. № 33. S. 105–114.
7. Sedykh I. V., Smolenskiy D. E., Nazarenko D. S. Eksperimentalnoe podtverzhdenie rabotosposobnosti capillyrnogo zabornogo ustroistva (setchatogo razdelitelya) pri programmnom razvorote. Visn. Dnipr. un-tu. Ser.: Raketno-kosmichna tekhnika. 2018. Vyp. 21. T. 26. S. 112–119.
8. Garkusha V. A., Shevchenko B. A., Rada N. A., Prilukova L. V. Eksperimentalnaya otrabotka sredstv obespecheniya sploshnosti komponentov topliva kosmicheskykh letatelnykh apparatov: Obzor po materialam otkrytoy zarubezhnoy pechati za 1963–1983. Seria UP. № 235. GONTI-3. 1984. 38 s.
Downloads: 45
Abstract views: 
662
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Dublin; Ashburn; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Ukraine Dnipro; Dnipro2
Philippines1
Finland Helsinki1
Canada Monreale1
France Strasbourg1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>