Search Results for “Shevchenko B. А.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 13:02:47 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Shevchenko B. А.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 18.1.2020 Development of autonomous power engineering systems with hydrogen energy storage https://journal.yuzhnoye.com/content_2020_1-en/annot_18_1_2020-en/ Wed, 13 Sep 2023 11:57:42 +0000 https://journal.yuzhnoye.com/?page_id=31056
<b>Shevchenkob> А. S., <b>Shevchenkob> А. Solovey V., Kozak L., <b>Shevchenkob> A., Zipunnikov M., Campbell R., Seamon F. Solovey V., Zipunnikov N., <b>Shevchenkob> A., Vorobjova I., Kotenko A. М., <b>Shevchenkob> А. Content 2020 (1) Downloads: 18 Abstract views: 758 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Boardman 11 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles <b>Shevchenkob> A. Development of autonomous power engineering systems with hydrogen energy storage Автори: <b>Shevchenkob> A. Development of autonomous power engineering systems with hydrogen energy storage Автори: <b>Shevchenkob> A. Development of autonomous power engineering systems with hydrogen energy storage Автори: <b>Shevchenkob> A. Development of autonomous power engineering systems with hydrogen energy storage Автори: <b>Shevchenkob> A.
]]>

18. Development of autonomous power engineering systems with hydrogen energy storage

Organization:

Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 160-169

DOI: https://doi.org/10.33136/stma2020.01.160

Language: Russian

Annotation: The article analyzes the energy potential of alternative sources of Ukraine. The projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling automobile vehicles located in areas with high solar radiation potential, are considered. During the operation of water desalination plants using a solar power station as an energy source, contingencies are very likely to arise due to either a power outage (due to cloudy weather) or an emergency failure of individual elements of the system. In this case, it is required to ensure its removal from service without loss of technological capabilities (operability). For this purpose, it is necessary to provide for the inclusion in the technological scheme of the energy technological complex of an additional element that ensures operation of the unit for a given time, determined by the regulations for its operation. As such an element, a buffer system based on a hydrogen energy storage device is proposed. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. N. Podgorny of the National Academy of Sciences of Ukraine allows producing and accumulating the hydrogen under high pressure, which eliminates the use of compressor technology.

Key words: alternative energy sources, hydrogen, solar energy, hydrogen generator

Bibliography:
1. Syvolapov V. Potentsial vidnovliuvanykh dzherel enerhii v Ukraini. Agroexpert. 2016. № 12 (101). S. 74–77.
2. Züttel A., Remhof A., Borgschulte A., Friedrichs O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. № 368(1923). Р. 3329–3342. https://doi.org/10.1098/rsta.2010.0113
3. Vozobnovliaemaia energetika. URL: https://nv.ua/tags/vozobnovljaemaja-enerhetika.htmt (access date: 27.01.2020).
4. Sherif S. A., Barbir F., Veziroglu T. N. Wind energy and the hydrogen economy-review of the technology. Solar energy. 2005. № 78(5). P. 647–660. https://doi.org/10.1016/j.solener.2005.01.002
5. Schlapbach L. Technology: Hydrogen-fuelled vehicles. Nature. 2009. № 460(7257). P. 809. https://doi.org/10.1038/460809a
6. Shevchenko A. A., Zipunnikov M. М., Kotenko А. L., Vorobiova I. O., Semykin V. M. Study of the Influence of Operating Conditions on High Pressure Electrolyzer Efficiency. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 53–60. https://doi.org/10.15407/pmach2019.04.053
7. Clarke R. E., Giddey S., Ciacchi F. T., Badwal S. P. S., Paul B., Andrews J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy. 2009. № 34(6). P. 2531–2542. https://doi.org/10.1016/j.ijhydene.2009.01.053
8. Kunusch C., Puleston P. F., Mayosky M. A., Riera J. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Transactions on Control Systems Technology. 2009. № 17(1). P. 167–174. https://doi.org/10.1109/TCST.2008.922504
9. Mazloomi K., Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012. № 16. P. 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028
10. Sharma S., Ghoshal S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015. № 43. P. 1151–1158. https://doi.org/10.1016/j.rser.2014.11.093
11. Prystrii dlia oderzhannia vodniu vysokoho tysku: pat. 103681 Ukraina: MPK6 S 25V 1/12 / V. V. Solovey, A. A. Shevchenko, A. L. Kotenko, O. О. Makarov (Ukrajina). № 2011 15332; zajavl. 26.12.2011; opubl. 10.07.2013, Biul. № 21. 4 s.
12. Shevchenko А. А. Ispolzovanie ELAELov v avtonomnykh energoustanovkakh, kharakterizuyushchikhsia neravnomernostju energopostupleniia. Aviatsionno-kosmicheskaia tekhnika i technologiia: sb. nauch. tr. 1999. Vyp. 13. S. 111–116.
13. Solovey V. V., Zhirov А. S., Shevchenko А. А. Vliianie rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniia. Sovershenstvovaniie turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniia: sb. nauch. tr. 2003. S. 250–254.
14. Solovey V., Kozak L., Shevchenko A., Zipunnikov M., Campbell R., Seamon F. Hydrogen technology of energy storage making use of windpower potential. Problemy Mashinostroyeniya. Journal of Mechanical Engineering. 2017. Vol. 20, № 1. P. 62–68. https://doi.org/10.17721/fujcV6I2P73-79
15. Solovey V. V., Kotenko А. L., Vorobiova I. О., Shevchenko A. А., Zipunnikov M. М. Osnovnye printsipy raboty i algoritm upravleniya bezmembrannym elektrolizerom vysokogo davleniia. Problemy mashinostroyeniia. 2018. T. 21, №. 4. S. 57–63. https://doi.org/10.15407/pmach2018.04.057
16. Solovey V., Khiem N. T., Zipunnikov M. M., Shevchenko A. A. Improvement of the Membraneless Electrolysis Technology for Hydrogen and Oxygen Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 2. P. 73–79. https://doi.org/10.17721/fujcV6I2P73-79
17. Solovey V., Zipunnikov N., Shevchenko A., Vorobjova I., Kotenko A. Energy Effective Membrane-less Technology for High Pressure Hydrogen Electro-chemical Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 1. P.151–156. https://doi.org/10.17721/fujcV6I1P151-156
18. Solovey V. V., Zipunnikov М. М., Shevchenko А. А., Vorobiova І. О., Semykin V. M. Bezmembrannyi henerator vodniu vysokoho tysku. Fundamentalni aspekty vidnovliuvano-vodnevoi enerhetyky i palyvno-komirchanykh technologij / za zahal. red. Yu. М. Solonina. Kyiv, 2018. S. 99–107.
19. Matsevytyi Yu. M., Chorna N. A., Shevchenko A. A. Development of a Perspective Metal Hydride Energy Accumulation System Based on Fuel Cells for Wind Energetics. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 48–52. https://doi.org/10.15407/pmach2019.04.048
20. Phillips R., Edwards A., Rome B., Jones D. R., Dunnill C. W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy. 2017. № 42. P. 23986–23994. https://doi.org/10.1016/j.ijhydene.2017.07.184
Downloads: 18
Abstract views: 
758
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Boardman11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.2.2017 Oxidizer Feedline Structural Optimization Results https://journal.yuzhnoye.com/content_2017_2/annot_15_2_2017-en/ Wed, 09 Aug 2023 12:10:23 +0000 https://journal.yuzhnoye.com/?page_id=29846
, <b>Shevchenkob> B. V., <b>Shevchenkob> B. V., <b>Shevchenkob> B. V., <b>Shevchenkob> B. V., <b>Shevchenkob> B. V., <b>Shevchenkob> B. V., <b>Shevchenkob> B. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX на сайт ДП «КБ «Південне»
]]>

15. Oxidizer Feedline Structural Optimization Results

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 77-82

Language: Russian

Annotation: Two design options of manifold and dividing valve are considered, the loss calculation by analytical and numerical methods has been made. Based on the calculation results, the optimal design option has been selected. The calculation correctness is confirmed as a result of development tests of the design.

Key words:

Bibliography:
1. Idel’chik I. E. Guide on Hydraulic Resistances / Under the editorship of M. O. Steinberg. 3rd edition revised and enlarged. М., 1992. 672 p.
2. Yan’shin B. I. Hydrodynamic Characteristics of Regulating Valves and Pipeline Elements. М., 1965. 259 p.
3. Gurevich D. F. Calculation and Designing of Pipeline Fittings: Calculation of Pipeline Fittings. 5th edition. М., 2008. 480 p.
4. Frenkel N. Z. Hydraulics. М., L., 1956. 451 p.
5. Reference Book on Hydraulics, Hydraulic Machines, and Hydraulic Actuators / Under the editorship of B. B. Nekrasov. Minsk, 1985.
6. Alyamovsky A. A. “Solid Works” Computer Modeling in Engineering Practice. Saint Petersburg, 2012. 445 p.
Downloads: 20
Abstract views: 
445
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Dublin; Monroe; Ashburn; Ashburn; Boardman; Seattle; Seattle; San Mateo; San Mateo; Boardman13
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro; Dnipro2
15.2.2017 Oxidizer Feedline Structural Optimization Results
15.2.2017 Oxidizer Feedline Structural Optimization Results
15.2.2017 Oxidizer Feedline Structural Optimization Results
]]>
4.2.2017 Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics https://journal.yuzhnoye.com/content_2017_2/annot_4_2_2017-en/ Tue, 08 Aug 2023 12:33:25 +0000 https://journal.yuzhnoye.com/?page_id=29746
<b>Shevchenkob>, Y. Kubanov, А. Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics Автори: Logvinenko A. Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics Автори: Logvinenko A. Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics Автори: Logvinenko A. Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics Автори: Logvinenko A. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX на сайт ДП «КБ «Південне»
]]>

4. Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 19-24

Language: Russian

Annotation: The main directions of upgrading the pneumohydraulic systems are considered. Some methods of increasing their operability and reliability are analyzed.

Key words:

Bibliography:
1. Belyayev N. M. Rocket Propellant Tanks Pressurization Systems. М., 1976.
2. Kozlov A. A., Novikov V. N., Solov’yov E. V. Liquid Rocket Propulsion Systems Feeding and Control Systems. М., 1988.
3. Patent 51806, Ukraine, MPK В64Д 37/00. Rocket Propellant Tank Pressurization Method / B. A. Shevchenko, Y. A. Mitikov, А. I. Logvinenko (Ukraine). Applicant and patent holder Yuzhnoye SDO. No. 2000031474; Claimed 15.03.2002; Published 16.12.2002, Bulletin No. 12.
4. Patent 72330, Ukraine, MPK F02K 9/44, F02K 11/00. Method of Propellant Residues Utilization in Liquid Rocket Propulsion System / G. M. Ivanitsky, S. N. Kubanov, А. I. Logvinenko, G. I. Yushin (Ukraine); Applicant and patent holder Yuzhnoye SDO. No. 200210267; Claimed 16.12.2002; Published 15.02.2005, Bulletin No. 2.
5. Logvinenko A. I. Evolution Tendencies of LV Propellant Tanks Pressurization Systems. Paper presentation at IAA Congress (Fukuoka, Japan, October 2005). Dnepropetrovsk, 2005.
6. Mashchenko A. N., Logvinenko A. I. Passivation of LV Upper Stages Propellant Systems: Effective Means of Space Debris Control. Paper presentation at IAA Congress (Hyderabad, India, October 2007). Dnepropetrovsk, 2007.
Downloads: 15
Abstract views: 
133
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Seattle; Ashburn; Seattle; Portland; San Mateo; Boardman; Ashburn10
Singapore Singapore; Singapore; Singapore3
Ukraine Dnipro; Dnipro2
4.2.2017 Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics
4.2.2017 Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics
4.2.2017 Increase of LV Payload Capability through Enhancement of Propulsion System Pneudraulic System Characteristics
]]>