Search Results for “Sirenko V. M.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 23 Apr 2024 08:57:26 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Sirenko V. M.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 9.2.2019 Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel https://journal.yuzhnoye.com/content_2019_2-en/annot_9_2_2019-en/ Tue, 03 Oct 2023 11:48:27 +0000 https://journal.yuzhnoye.com/?page_id=27211
Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel Authors: Sirenko V. Content 2019 (2) Downloads: 18 Abstract views: 432 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Baltimore; Plano; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; Boardman; Ashburn 10 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Iran 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Sirenko V. Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel Автори: Sirenko V. Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel Автори: Sirenko V. Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel Автори: Sirenko V. Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel Автори: Sirenko V.
]]>

9. Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 63-70

DOI: https://doi.org/10.33136/stma2019.02.063

Language: Russian

Annotation: A promising experimental bench – a shock wind tunnel was put into operation at Yuzhnoye SDO. The shock wind tunnel is designed to simulate the incident flow during rocket flight at high supersonic and hypersonic velocities. To solve actual design problems facing Yuzhnoye SDO, it was necessary to expand the range of velocities under investigation in a shock wind tunnel by low supersonic Mach numbers (Mа=1.5; 2; 3). As a result of this work, a modernized configuration of the shock wind tunnel was developed, which allows simulating flow parameters at low supersonic velocities. The results of aerodynamic experiment performed in the modernized shock wind tunnel, which are close to full scale ones, can be obtained using as much data on peculiarities of supersonic flow formation in it as possible. Therefore, the study of the distribution of Mach numbers profiles in the working section of the modernized shock wind tunnel at low and high supersonic velocity was chosen as the main line of research. The results of the research presented in the article are based on the use of numerical simulation methods, as well as data obtained experimentally. As a result of gasdynamic simulation of a supersonic flow conducted for the nozzle Mа=4 and the nozzle Mа=2, the calculated and experimental data on the distribution pattern and field values of Mach numbers in the working section of the tunnel were obtained. A comparative analysis was carried out. The boundaries of the region of equal velocities, within which the condition of quasistatic supersonic flow is satisfied, and the lifetime of the operating mode for the selected nozzle type were determined. At the flow from the nozzle Mа=2, a peculiarity was revealed in the distribution pattern of Mach numbers fields associated with the appearance of “blocking” effect of the supersonic flow. The methods for eliminating the effect of flow “blocking” at low supersonic velocities are proposed.

Key words: incident flow modeling, velocity fields in the wind tunnel working section, aerodynamic experiment

Bibliography:
1. Zvegintsev V. I. Gasodynamicheskie ustanovki kratkovremennogo deistviya. V dvuh chastyakh. Ch. 1. Ustanovki dlya nauchnykh issledovaniy. Novosibirsk, 2014. 551 s.
2. Computerno-vymiryuvalni tekhnologii kontrolu ta upravlinnya raketno-kosmichnoi techniki / monogr. pid zagal. red. prof. V. P. Malaichuka. Dnipro, 2018. 344 s.
3. «Sirius-18». Systema izmereniya i upravleniya impulsnoi aerodynamicheskoi truboi. Rukovodstvo po ekspluatatsii. ELVA4.044.901 RE. 2018. 45 s.
4. Abramovich G.N. Prikladnaya gazovaya dynamika. M., 1978. 888 s.
5. Raschet vnutrennego davlenia v otsekakh RN. YSF YZH UMN 041 01. Rukovodstvo operatora. 2016. 138 s.
6. Issledovania characteristic hyperzvukovoi aerodynamicheskoi truby AT-303. Ch. 1. Polya skorostey / A. M. Kharitonov at al. Teplophysika i aeromekhanika. 2006. T. 13, № 1. S. 1–17.
Downloads: 18
Abstract views: 
432
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; Boardman; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Iran1
Ukraine Dnipro1
9.2.2019 Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel
9.2.2019 Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel
9.2.2019 Gas-dynamic simulation of the supersonic stream in the pulsed wind tunnel

Keywords cloud

]]>
11.1.2020 Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies https://journal.yuzhnoye.com/content_2020_1-en/annot_11_1_2020-en/ Wed, 13 Sep 2023 10:51:08 +0000 https://journal.yuzhnoye.com/?page_id=31040
Akimov D. V., Sirenko V. Akimov D. V., Sirenko V. Akimov D. Akimov D. Akimov D. V., Sirenko V. Eksperimentalnoe issledovanie deformirovannogo sostoianiia i prochnosti mezhstupenchatogo otseka raketonositelia pri staticheskom vneshnem nagruzhenii. Akimov D. Sravnitelnyi analiz metodik rascheta napriazhenno-deformirovannogo sostoianiia elementov konstruktsii raketonositelia. G., Akimov D. Z., Manievich А. nbuv.gov.ua/UJRN/Vznu_mat_2017_2_6. K probleme ravnoustojchivosti podkreplenoi obolochechnoi konstruktsii pri kombinirovannom nagruzhenii. URL: http://datareview.info/article/vse-modeli-mashinnogo-obucheniya-imeyut-svoi-nedostatki 16. Missile armaments, vol.
]]>

11. Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Organization:

Zaporizhzhia National University, Zaporizhzhia, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 107-113

DOI: https://doi.org/10.33136/stma2020.01.107

Language: Russian

Annotation: This article analyzes the results of studies, which are based on numerical methods of analysis, of the stress-strain state of thin-walled shell structures. This article also discusses analytical solutions that apply asymptotic approaches and a method of initial parameters in a matrix form for solving a problem of equal stability of reinforced compartments of combined shell systems of the rocket and space technology within the scope of the research being carried out jointly by teams of Yuzhnoye State Design Office and Zaporizhzhya National University. The primary attention is paid to the use of FEM-based direct numerical methods and the research results for which analytical methods can be useful for making a preliminary assessment of the bearing capacity of load-bearing structures, and in some cases for their rational design. This article does not contrast numerical and analytical approaches but about the possibility of using them effectively. The article talks about possible ways of using the up-to-date technique of machine learning (Machine Learning Technology) in the calculation and experimental methods for determining the characteristics of the rocket and space technology.

Key words: numerical and analytical methods, stress-strain state, rocket structures, shell system, reinforcing load-bearing elements, local and general stability, machine learning technology

Bibliography:
1. Jean-Jacques Rousseau. URL: https://www.sdamesse.ru/2019/03/blog-post_14.html.
2. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Grebenyk S. N., Lisniak А. А., Choporov S. V., Larionov I. F., Klimenko D. V., Sirenko V. N. Matematicheskoe modelirovanie i issledovanie prochnosti silovykh elementov konstruktsij kosmicheskikh letatelnykh apparatov. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2015. № 3. S. 6–13.
3. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Finite-element analysis and experimental investigation on the strength of a three-layered honeycomb sandwich structure of spacecraft adapter module. Strength of Materials. 2016. № 3. P. 52–57. https://doi.org/10.1007/s11223-016-9775-y
4. Akimov D. V., Larionov I. F., Klimenko D. V., Gristchak V. Z., Gomenjuk S. I. Matematicheskoe modelirovanie i issledovanie napriazhenno-deformirovannogo sostoianiia otsekov raket kosmicheskogo naznacheniia. Kosmicheskaya tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. GP «KB «Yuzhnoye». Dnipro, 2019. Vyp. 1. S. 21–27. https://doi.org/10.33136/stma2019.01.021
5. Yarevskii Ye. А. Teoreticheskie osnovy metodov kompiuternogo modelirovaniia: ucheb.-metod. posobie. Sankt-Peterburg, 2010. 83 S.
6. Klovanich S. F. Metod konechnykh elementov v nelineinykh zadachakh inzhenernoi mekhaniki. Zaporozhie, 2009. 394 S.
7. Akimov D. V., Gristchak V. Z., Larionov I. F., Gomenjuk S. I., Klimenko D. V., Choporov S. V., Grebenyk S. N. Matematicheskoe obespechenie analiza prochnosti silovykh elementov raketno-kosmicheskoi techniki. Problemy obchysliuvalnoi mekhaniky i mitsnosti konstruktsii: zb. nayk. prats. 2017. Vyp. 26. S. 5–21.
8. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Eksperimentalnoe issledovanie deformirovannogo sostoianiia i prochnosti mezhstupenchatogo otseka raketonositelia pri staticheskom vneshnem nagruzhenii. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. №1. S. 82–89.
9. Akimov D. V., Gristchak V. Z., Grebenyk S. N., Gomenjuk S. I. Sravnitelnyi analiz metodik rascheta napriazhenno-deformirovannogo sostoianiia elementov konstruktsii raketonositelia. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. № 2. S. 116–120.
10. Gristchak V. Z., Gomeniuk S. I., Grebeniuk S. N., Larionov I. F., Degtiarenko P. G., Akimov D. V. An Investigation of a Spacecraft’s Propellant Tanks Shells Bearing Strength. Aviation in XXI-st Century. Safety in Aviation and Space Technologies: Proccedings the Sixth world congress. Kiev, 2014. Vol. 1. Р. 1.14.49–1.14.51.
11. Gristchak V. Z., Manievich А. I. Vliianiie zhestkosti shpangoutov na izgib iz ploskosti na ustoichivost podkreplennoi tsilindricheskoi obolochki. Gidroaeromechanika i teoriia uprugosti. 1972. Vyp. 14. S. 121–130.
12. Gristchak V. Z., Diachenko N. M. Opredelenie oblastei ustoichivosti konicheskoi obolochki pri kombinirovanom nagruzhenii na baze gibridnogo asimptoticheskogo podkhoda. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2017. №2. S. 32–46. URL: http:// nbuv.gov.ua/UJRN/Vznu_mat_2017_2_6.
13. Dehtiarenko P. H., Gristchak V. Z., Gristchak D. D., Diachenko N. M. K probleme ravnoustojchivosti podkreplenoi obolochechnoi konstruktsii pri kombinirovannom nagruzhenii. Kosmicheskaia nauka I technologiia. 2019. Т. 25, № 6(121). S. 3–14.
14. Kononiuk А. Е. Fundamentalnaia teoriia oblachnykh technologij: v 18 kn. Kyiv, 2018. Kn. 1. 620 s.
15. URL: http://datareview.info/article/vse-modeli-mashinnogo-obucheniya-imeyut-svoi-nedostatki
16. Choporova О. V., Choporov S. V., Lysniak А. О. Vykorystannia mashynnoho navchannia dlia prohnozuvannia napruzheno-deformovannoho stanu kvadratnoi plastyny. Matematychne modeliuvannia fizychnykh I tekhnolohichnykh system. Visnyk KhNTU. 2019. № 2(69). S. 192–201.
Downloads: 18
Abstract views: 
577
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Columbus; Ashburn; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro1
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Keywords cloud

]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
2 , Sirenko V. Hudramovich. V., Sirenko V. Novyie vozmozhnosti: nauch.-tekhn. Sirenko V. Shestdesiat let v raketostroyenii i kosmonavtike. S., Sirenko V. Problemy nelineinogo deformirovaniia. Herasimov V. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Herasimov V. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. А., Matvienko D. G., Romanov А. S., Sirenko V. S., Sirenko V. S., Sirenko V. S., Sirenko V. S., Sirenko V. S., Sirenko V.
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 19
Abstract views: 
1102
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Dublin; Monroe; Ashburn; Ashburn; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Odessa; Dnipro2
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing https://journal.yuzhnoye.com/content_2020_1-en/annot_4_1_2020-en/ Wed, 13 Sep 2023 05:51:26 +0000 https://journal.yuzhnoye.com/?page_id=31024
Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing Authors: Sirenko V. Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing Автори: Sirenko V. Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing Автори: Sirenko V. Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing Автори: Sirenko V. Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing Автори: Sirenko V.
]]>

4. Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 34-43

DOI: https://doi.org/10.33136/stma2020.01.034

Language: Russian

Annotation: High-precision guidance of supersonic flying vehicles maneuvering while descending in the atmosphere with high degree of thermal protection ablation is a well-known problem of space ballistics. The existing methods for calculating the ablation of thermal protection and the subsequent calculation of aerodynamic characteristics lead to scatter of the landing points of a flying vehicle reaching 5 km or more. The functional guidance method, in principle, allows achieving the required guidance accuracy (hundreds of meters), however, it requires a reserve of power of the controls at a level 50% to counter the influence of disturbing factors. The known terminal guidance method, which has recently become widespread, is based on a highly accurate prediction of motion parameters and, in this regard, has little promise. The method has been described in the article that allows 15-20-fold reducing the flight range scatters caused by lack of knowledge (including due to coating ablation) of its current aerodynamic characteristics and ensuring that the accumulated lateral deviation is counteracted in the limit to 1-1.5 km. The method is applicable to the flying vehicles with weight asymmetry (“transverse” displacement of the center of mass), performing maneuvering under conditions of aerodynamic balancing. The method is based on the solution to increase the accuracy of hits by spinning the shells around longitudinal axis. It is proposed that when a flying vehicle moves in the dive mode by means of the onboard CVC, it is regular (at intervals) to calculate its flight path in the (conditionally) autorotation mode. Based on the results of processing single calculations, the corresponding flight ranges of a flying vehicle and the lateral displacement of the touchdown points are determined, the point in time is predicted at which the flight range of the flying vehicle is equal to the specified one and the average lateral deviation is determined. At this moment the angular movement of the flying vehicle is transferred to the autorotation mode. Counteraction of the lateral displacement is introduced by adjusting the half-periods of flying vehicle movement along the angle of the precession. An example of pointing a flying vehicle at a given range, and bringing it to the touchdown point, shifted to the right relative to the original flight path by 1 km. The error of the terminal guidance of a maneuvering while reducing the aircraft using the proposed guidance method is determined.

Key words: angular motion of flying vehicle; touchdown point, methodological error of guidance, guidance of maneuvering supersonic flying vehicle

Bibliography:
1. Eliasberg P. Е. Vvedenie v teoriiu poleta iskusstvennykh sputnikov Zemli. М., 1965. 540 s.
2. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
3. Levin A. S., Mashtak I. V., Sheptun А. D. Dinamika manevrirovaniia v atmosphere LA s vesovoi asimmetriei i elementami terminalnogo upravleniia na uchastke razvorota. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. statei / GP “KB “Yuzhnoye”. Dnipro, 2019. Vyp. 1. S. 4–14. https://doi.org/10.33136/stma2019.01.004
4. Chandler D. C., Smith I. E. Development of the iterative guidance mode with is application to varies vehicles and missions. Journal of Spacecraft and Rockets. 1967. Vol 1.4, №7. P. 898-903. https://doi.org/10.2514/3.28985
Downloads: 19
Abstract views: 
368
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; San Mateo; Ashburn; Boardman9
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Ukraine Dnipro1
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing

Keywords cloud

]]>
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays https://journal.yuzhnoye.com/content_2017_1/annot_7_1_2017-en/ Tue, 27 Jun 2023 12:14:44 +0000 https://journal.yuzhnoye.com/?page_id=29425
Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays Authors: Sirenko V. Content 2017 (1) Downloads: 17 Abstract views: 163 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Baltimore; Monroe; Ashburn; Seattle; Seattle; Seattle; Portland; San Mateo; Ashburn 10 Singapore Singapore; Singapore; Singapore; Singapore; Singapore 5 Ukraine Dnipro; Dnipro 2 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Sirenko V. Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays Автори: Sirenko V. Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays Автори: Sirenko V. Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays Автори: Sirenko V.
]]>

7. Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 43-47

Language: Russian

Annotation: The methodology is proposed of probabilistic assessment of fulfilment of the requirements to gas dynamic parameters in launch vehicle vented bays in the cases when it is impossible to categorically ensure satisfaction of all limitations. By the example of Zenit LV it is shown that when using the statistic assessment, it is possible to considerably expand the launch vehicles application field from the viewpoint of ensuring required conditions in the spacecraft area.

Key words:

Bibliography:
1. Calculation of Venting Parameters in Zenit-3SL ILV Bays PLB, US and IB in Injection Leg. Zenit-3SL 21.13651.122 ОТ: Technical Report. Dnipropetrovsk, 1998. 104 p.
2. Verification of Gas Dynamic and Design Parameters of Thermostating System and Globalstar SC X-Panels Local Blow off System: Report on research work / NASU ITM No12-12/97. 1997. 79 p.
3. Idelchik I. E. Guide on Hydraulic Resistances / Under the editorship of M. O. Steinberg. 3rd edition revised and enlarged. М., 1992. 672 p.
4. Kremer N. Sh. Theory of Probability and Mathematical Statistics: Tutorial. М., 2010. 551 p.
5. Zenit-3SL Integrated Launch Vehicle. Zenit-2S Launch Vehicle. Aerodynamic Analysis. P. 1. Materials on Aero Gas Dynamics. Book 5. Zenit-2S / Thuraya Р01.05: RBD Materials. Dnipropetrovsk, 2000. 120 p.
Downloads: 17
Abstract views: 
163
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Monroe; Ashburn; Seattle; Seattle; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro; Dnipro2
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays
]]>
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source https://journal.yuzhnoye.com/content_2019_1-en/annot_9_1_2019-en/ Thu, 25 May 2023 12:09:50 +0000 https://journal.yuzhnoye.com/?page_id=27714
Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source Authors: Sirenko V. Content 2019 (1) Downloads: 19 Abstract views: 392 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Baltimore; Plano; Dublin; Monroe; Ashburn; Ashburn; Seattle; Boydton; Portland; San Mateo; Boardman 12 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Sirenko V. Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source Автори: Sirenko V. Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source Автори: Sirenko V. Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source Автори: Sirenko V. Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source Автори: Sirenko V.
]]>

9. Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 64-71

DOI: https://doi.org/10.33136/stma2019.01.064

Language: Russian

Annotation: During lift-off of integrated launch vehicles, the propulsion system jet generates acoustic field. Therewith, the loads can be created that are critical for the launching equipment, rocket body and especially for the spacecraft, which are under the fairing. To take into account the effects on these elements, it is necessary to determine the characteristics of generated acoustic field. The method was developed that allows modeling the acoustic fields during integrated launch vehicle lift-off based on determination of acoustic sources type. In particular, modeling of Cyclone-4M ILV jet acoustic radiation by bulky source was performed. This provided the possibility to calculate acoustic pressure amplitudes in ILV ambient medium and to evaluate acoustic effect on the rocket body at certain points. The method is expected to be used to investigate kR wave parameter. The modeling of integrated launch vehicle propulsion system (ILV PS) jet acoustic field as bulky radiation source was performed in the rocket flight leg where ILV ascent altitude does not exceed ~ 25 m. In this case, one should be based on the value of boundary frequency fb =150 Hz which separates two types of acoustic field: fb ˂ 150 Hz – front of acoustic wave of spherical type, fb > 150 Hz – front of acoustic wave of flat type. The algorithm and program of calculation of sound pressure levels were developed in JAVA language. The characteristics of acoustic fields sound pressure levels were calculated depending on radiation frequency taking into account environmental temperature. The maximal acoustic pressure level in 150 Hz frequency in the payload area outside the fairing – 155 dB, in the instrumentation bay area – 157 dB, in the intertank bay area – 172 dB, in the aft bay area – 182 dB. In the frequencies lower than 150 Hz, the sound pressure levels are lower. The calculation data are presented graphically.

Key words: integrated launch vehicle, acoustic field, sound pressure

Bibliography:

1. Dementiev V. K. O maximalnykh akusticheskykh nagruzkakh na rekety pri starte/ V. K. Dementiev, G. Ye. Dumnov, V. V. Komarov, D.A. Melnikov// Kosmonavtika I raketostroenie. 2000. Vyp. 19. P. 44-55.
2. Tsutsumi S., Ishii T., Ut K., Tokudone S., Chuuouku Y., Wado K. Acoustic Design of Launch Pad for Epsilon Launch Vehicle / Proceedings of AJCPP2014 . Asian Joint Conference on Propulsion and Power, March 5- 8, 2014, Jeju Island, Korea. AJCPP2014-090.
3. Panda J., Mosher R., Porter D.J. Identification of Noise Sources during Rocket Engine Test Firings and a Rocket Launch a Microphone Phased-Array // NASA / TM2013-216625, December 2013. P. 1-20.
4. Sokol G. I. Metod opredeleniya vida istochnikov akusticheskogo izlucheniya v pervye secundy starta raket kosmicheskogo naznacheniya/ G. I. Sokol// Systemne proektuvannya ta analiz characteristic aerokosmichoi techniki: Zb. nauk. pr. 2018. XXIV. Dnipro: Lira, 2018. P. 91-101.
5. Sokol G. I., Frolov V. P., Kotlov V. Yu. / Volnovoy parameter kak kriteriy v osnove metoda issledovaniya akusticheskikh istochnikov pro starte raket/ Aviatsionno-kosmicheskaya technika I technologia. 2018. 3 (147), May-June 2018. Kharkov: KhAI, 2018. P. 4-13. DОІ:http://doi.org /10.20535/0203- 3771332017119600.
6. Rzhevkin S. N. Kurs lektsiy po teorii zvuka/ S. N. Rzhevkin. M.: MGU, 1960. 261 p.
7. Tyulon V. N. Vvedenie v teoriyu izlucheniya I rasseyaniya zvuka / V. N. Tyulin. M.: Nauka, 1976. 253 p.
8. Sapozhkov M. A. Electroakustica/ M. A. Sapozhkov. M.: Svyaz, 1978. 272 p.
9. Grinchenko V. T., Vovk V. V., Matsipura V. T.. Osnovy akustiki. Kyiv: Nauk. dumka, 2007. 640 p.
10. Ultrazvuk: Malaya enciclopedia. M.: Nauka, 1983. 400 p.
11. Volkov K. N. Turbulentnye strui – staticheskie modeli i modelirovanie krupnykh vikhrey/ K. N. Volkov, V. N. Emelyanov, V. A. Zazimko. M.: Fizmatlit, 2013. 960 p.
12. Schildt G. Java 8. Polnoe rukovodstvo. 9-e izd. M.: Wiliams, 2015. 137 p.

Downloads: 19
Abstract views: 
392
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Dublin; Monroe; Ashburn; Ashburn; Seattle; Boydton; Portland; San Mateo; Boardman12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime https://journal.yuzhnoye.com/content_2019_1-en/annot_5_1_2019-en/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27710
1 , Sirenko V. M.: Izdatelstvo MVTU, 2018. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. Nesuschaya sposobnost’ sposobnost’ i dolgovechnostelementov konstruktsiy. S., SIrenko V. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. Vvedenie v kosmicheskuyu techniku/ Pod obsch. Mac-Ivily A. Mesarovich M. Mesarovich, D. S., Sirenko V. Hudramovych V. S., Sirenko V. Missile armaments, vol. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime Автори: Hudramovych V. S., Sirenko V. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime Автори: Hudramovych V. S., Sirenko V. S., Sirenko V. S., Sirenko V.
]]>

5. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Language: Russian

Annotation: This article contains results of methodology and standards development for life prediction of launch site structures to launch various types’ launch vehicles into near-earth orbit. Launch sites have been built in various countries of the world (European Union, India, China, Korea, Russia, USA, Ukraine, France, Japan, etc.). In different countries they have their own characteristics, depending on the type and performance of the launch vehicles, infrastructure features (geography of the site, nomenclature of the space objects, development level of rocket and space technology), problems that are solved during launches, etc. Solution of various issues, arising in the process of development of the standards for justification of launch site life is associated with the requirement to consider complex problems of strength and life of nonuniform structural elements of launch sites and structures of rocket and space technology. Launch sites are the combination of technologically and functionally interconnected mobile and fixed hardware, controls and facilities, designed to support and carry out all types of operations with integrated launch vehicles. Launch pad, consisting of the support frame, flue duct lining and embedded elements for frame mounting, is one of the principal components of the launcher and to a large extent defines the life of the launch site. Main achievements of Ukrainian scientists in the field of strength and life are specified, taking into account the specifics of various branches of technology. It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Main methodological steps of launch site structures life prediction are defined. Service limit of launch site is suggested to be the critical time or the number of cycles (launches) over this period, after which the specified limiting states are achieved in the dangerous areas of the load-bearing elements: critical cracks, destruction, formation of unacceptable plastic deformations, buckling failure, corrosion propagation, etc. Classification of loads acting on the launch sites is given. The useful life of launch site is associated with estimation of the number of launches. Concept of low and multiple-cycle fatigue is used. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.

Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur

Bibliography:

1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.

Downloads: 17
Abstract views: 
323
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA North Bergen; Plano; Columbus; Monroe; Ashburn; Seattle; San Mateo; Boardman; Ashburn9
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro1
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Keywords cloud

]]>
Editorial board https://journal.yuzhnoye.com/editorial-board-en/ Sat, 13 May 2023 17:09:21 +0000 https://journal.yuzhnoye.com/?page_id=27126
HORBULIN, Member of the Academy, Yangel Yuzhnoye State Design Office, Dnepr EXECUTIVE EDITOR OF THE EDITORIAL BOARD L.I. PETRUSENKO, Yangel Yuzhnoye State Design Office, Dnepr MEMBERS OF THE EDITORIAL BOARD V.P. KLIMENKO, Doctor of Engineering, KH.V. MAKAROV, Doctor of Engineering, S.M. SANIN, Doctor of Engineering; V.M. SIRENKO, Candidate of Engineering Sciences; V.S.
]]>
Editorial Board:

EDITOR-IN-CHIEF

M.O. DEGTIAROV, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr

DEPUTY EDITOR-IN-CHIEF

V.P. HORBULIN, Member of the Academy, Yangel Yuzhnoye State Design Office, Dnepr

EXECUTIVE EDITOR OF THE EDITORIAL BOARD

L.I. PETRUSENKO, Yangel Yuzhnoye State Design Office, Dnepr

MEMBERS OF THE EDITORIAL BOARD

V.P. HORBULIN, Member of the Academy of Sciences of Ukraine
GRAZIANI FILIPPO, Professor and Aerospace President,
YE.H. HLADKYI, Doctor of Engineering, Deputy Editor-in-Chief,
I.O. HUSAROVA, Doctor of Engineering,
I.I. DEREVIANKO, Doctor of Engineering,
D.V. KLIMENKO, Doctor of Engineering,
KH.V. KOZYS, Doctor of Engineering,
H.A. MAIMUR, Doctor of Engineering,
O.L. MAKAROV, Doctor of Engineering,
S.M. POLUIAN,
O.M. POTAPOV, Candidate of Engineering Sciences;
L.P. POTAPOVICH, Candidate of Engineering Sciences;
A.F. SANIN, Doctor of Engineering;
V.M. SIRENKO, Candidate of Engineering Sciences;
V.S. KHOROSHILOV, Doctor of Engineering;
V.S. SHEKHOVTSOV, Doctor of Engineering

Editorial board
Editorial board
Editorial board
]]>
Editorial board-old https://journal.yuzhnoye.com/editorial-board-en-old/ Sat, 13 May 2023 16:40:20 +0000 https://test8.yuzhnoye.com/?page_id=26177
SAVCHENKO, Yangel Yuzhnoye State Design Office, Dnepr MEMBERS OF THE EDITORIAL BOARD F. SIRENKO, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr V. MAKAROV, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr O.
]]>
Editorial board

EDITOR-IN-CHIEF

A. V. DEGTYAREV, Doctor of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr

DEPUTY EDITOR-IN-CHIEF

A. E. KASHANOV, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr

EXECUTIVE EDITOR OF THE EDITORIAL BOARD

V. P. SAVCHENKO, Yangel Yuzhnoye State Design Office, Dnepr

MEMBERS OF THE EDITORIAL BOARD

F. GRAZIANI, Professor and President of Aerospace, Rome
A. P. KUSHNAREV Yangel Yuzhnoye State Design Office, Dnepr
V. M. SIRENKO, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
V. I. KONOKH, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
A. N. LOGINOV, Yangel Yuzhnoye State Design Office, Dnepr
G. A. MAIMUR, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
A. L. MAKAROV, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
O. M. MASHCHENKO, Yangel Yuzhnoye State Design Office, Dnepr
A. V. NOVIKOV, Candidate of Engineering Science, Professor, Yangel Yuzhnoye State Design Office, Dnepr
A. M. POTAPOV, Candidate of Engineering Science, Yangel Yuzhnoye State Design Office, Dnepr
A. F. SANIN, Doctor of Engineering Science, Professor, Oles Honchar Dnipro National University
V. D. TKACHENKO, Yangel Yuzhnoye State Design Office, Dnepr
V. S. KHOROSHILOV, Doctor of Engineering Science, Professor, Yangel Yuzhnoye State Design Office, Dnepr
A. D. SHEPTUN, Doctor of Engineering Science, Docent, Yangel Yuzhnoye State Design Office, Dnepr

Editorial board-old
Editorial board-old
Editorial board-old
]]>