Search Results for “Sokolov O. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Mon, 17 Jun 2024 12:32:44 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Sokolov O. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge https://journal.yuzhnoye.com/content_2024_1-en/annot_12_1_2024-en/ Mon, 17 Jun 2024 11:36:02 +0000 https://journal.yuzhnoye.com/?page_id=35070
M., Sokolova G.
]]>

12. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Ukrainian State University of Science and Technologies2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 102-113

Language: Ukrainian

Annotation: Steel hardening technology is considered, which implies modification of the steel surface with the method of ion-plasma nitriding in glow discharge. Ion-plasma nitriding is a multi-factor process, which requires the study of the influence of nitriding process conditions on the structure of modified layers, which, in its turn, determines their mechanical properties. The subjects of research included: austenitic steel 12X18Н10T, carbon steel Ст3 and structural steel 45. There were two conditions of plasma creation during the research: free location of samples on the surface of the cathode (configuration I) and inside the hollow cathode (configuration II). Optimal parameters of the ion-plasma nitriding process have been determined, which provide stability of the process and create conditions for intensive diffusion of nitrogen into the steel surface. Hydrogen was added to the argon-nitrogen gaseous medium to intensify the nitriding process. Working pressure in the chamber was maintained within the range of 250-300 Pa, the duration of the process was 120 minutes. Comparative characteristics of the structure and microhardness of the modified surfaces of the steels under study for two ion-plasma nitriding technologies are presented. Metallographic examination of the structure of the surface modified layers in the cross section showed the presence of the laminated nitrided layer, which consists of different phases and has different depths, depending on the material of the sample and treatment mode. Nitrided layer of 12Х18Н10Т steel consisted of four sublayers: upper “white” nitride layer, double diffuse layer and lower transition layer. The total depth of the nitrided layer after the specified treatment time reached 23 μm, use of hollow cathode increased it by 26% to 29 μm. The nitrided layers of steel Ст3 and steel 45 consisted of two sublayers – thick “white” nitride layer and general diffuse layer with a thickness of about 18 μm. The microhardness of the nitrided layer of steel Ст3 was 480 HV, increasing by 2,5 times, and for steel 45 was 440 HV, increasing by 1,7 times. The use of hollow cathode for these steels reduces the depth of the nitrided layer, but at the same time the microhardness increases due to the formation of a thicker and denser nitride layer on the surface. The results of the conducted research can be used to strengthen the surfaces of the steel parts in rocket and space technology, applying high-strength coatings.

Key words: ion nitriding, glow discharge, cross-sectional layer structure, hardening, microhardness

Bibliography:

1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49.
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12.
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108.
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52.
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35.
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p.
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283.
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68.
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.

Downloads: 17
Abstract views: 
1092
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Dublin; Phoenix; Phoenix; Phoenix; Ashburn; Des Moines; Boardman8
Ukraine Kyiv; Dnipro2
Singapore Singapore; Singapore2
Belgium Brussels1
Finland Helsinki1
France1
Canada Monreale1
Netherlands Amsterdam1
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring https://journal.yuzhnoye.com/content_2018_2-en/annot_16_2_2018-en/ Thu, 07 Sep 2023 12:13:23 +0000 https://journal.yuzhnoye.com/?page_id=30792
Sokolovsky, V.
]]>

16. Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 139-142

DOI: https://doi.org/10.33136/stma2018.02.139

Language: Russian

Annotation: The structure examined herein aims to keep fuel from entering the space behind the cuff, evacuate the space behind the cuff, reliably fasten the cuff to the thermal protective coating of the bottom in the process of charge forming, easily release the cuff after charge forming, and remove the support structure elements from the casing after charge polymerization when equipping. The structure was tested in the process of fueling the solid rocket motor casing and during charge polymerization. In order to comply with the specified requirements the cuff functions were identified, the structures previously developed were analyzed, and a new structure was designed and improved after testing. The improved structure ensured that fuel did not enter the space behind the cuff; it was removed easily after charge forming. Conclusions proved the suitability of this stricture.

Key words: insert, charge, ring, cuff

Bibliography:
1. Solid Rocket Motors Design / Under the editorship of L. N. Lavrov. М., 1993. 214 p.
2. Solid Rocket Motor Charged Case: Patent 2418187C1 Russian Federation: MPK F02K 9/34 (2006:01) / M. I. Sokolovsky, V. Z. Karimov, Y. B. Nelzin, N. N. Karmanov, B. A. Nesterov; Applicant and patent holder OJSC NPO Iskra. No. 2009146654; claimed 15.12.09; published 10.05.11, Bulletin No. 13.
Downloads: 31
Abstract views: 
1018
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Los Angeles;; Plano; Columbus; Phoenix; Monroe; Ashburn; Seattle; Boardman; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Belgium Brussels1
Finland Helsinki1
Germany Frankfurt am Main1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
11.1.2017 Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors https://journal.yuzhnoye.com/content_2017_1/annot_11_1_2017-en/ Wed, 28 Jun 2023 12:21:35 +0000 https://journal.yuzhnoye.com/?page_id=29442
Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors Authors: Sokolov O. Content 2017 (1) Downloads: 37 Abstract views: 353 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Matawan; Baltimore; Plano; Columbus; Phoenix; Phoenix; Monroe; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn 20 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 9 Ukraine Dnipro; Dnipro 2 Finland Helsinki 1 Germany 1 Great Britain London 1 Mongolia 1 Canada Monreale 1 Romania Voluntari 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Sokolov O. Sokolov O. Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors Автори: Sokolov O.
]]>

11. Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 70-77

Language: Russian

Annotation: The mathematical models are presented and the calculations are made of lower atmosphere contamination with solid propellant combustion products, noise and thermal effects on environment in the test bench area. Based on earlier field investigations and on the results obtained, the assessment is given of ecological safety of the tests.

Key words:

Bibliography:
1. Noise Control in Industry: Guide / Under the editorship of E. Y. Yudin. М., 1985.
2. Maximum Permissible Concentrations and Approximate Safe Levels of Contaminating Substances Effect in Atmospheric Air of Populated Areas. Donetsk, 2000.
3. GOST 12.1.005-88. System of Labor Safety Standards. General Sanitary-Hygienic Requirements to Working Area Air / Collection of GOSTs. М., 1988.
4. Gusev N. G., Belyayev V. A. Radioactive Emissions in Biosphere: Guide. 2nd edition. M., 1991. 256 p.
5. Investigation of Environment Pollution during Tests of 365-Type Article on PMZ Site: Report on research work / MPO Technokhim, NPO GIPH. Leningrad, 1991.
6. Assessment of Hygienic Situation in the Area of Pavlograd Mechanical Plant during Tests of 15D365 Articles. Report by Agreement No48-6/91-429 YuR-1/Ministry of Health Protection of the USSR. M., 1991.
Downloads: 37
Abstract views: 
353
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Columbus; Phoenix; Phoenix; Monroe; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Germany1
Great Britain London1
Mongolia1
Canada Monreale1
Romania Voluntari1
11.1.2017 Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors
11.1.2017 Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors
11.1.2017 Environmental Safety of Bench Testing the Advanced Solid-Propellant Rocket Motors
]]>
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor https://journal.yuzhnoye.com/content_2019_1-en/annot_18_1_2019-en/ Wed, 24 May 2023 16:00:39 +0000 https://journal.yuzhnoye.com/?page_id=27723
A., Sokolovskiy G.
]]>

18. Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 122-131

DOI: https://doi.org/10.33136/stma2019.01.122

Language: Russian

Annotation: The basic results of the design calculations and mathematical modelling of the control processes in the precision high-speed servo drive are presented, as well as results of experimental studies of the functional mock-up of this servo drive’s movable gears of the throttle and fuel flow regulator of the ILV main engine. Major task of the studies was theoretical and experimental verification of the required static and dynamic accuracy of the servo drive in the process of try-out of the command signals reception from the main engine’s controller. In the phase of development, theoretical study of the linearized servo drive with application of transformations and theorems of Laplace passages to the limit is conducted. Analytical dependences between servo drive circuit parametres, its elements and characteristics of the control signals are obtained. Instrument errors and servostatic elasticity of the servo drive are calculated. Calculation model including the basic nonlinearities of this servo drive is prepared. Mathematical modelling of the control processes is conducted according to the computational model, varying the circuit and design parameters of the electric drive. Results of the theoretical studies were taken as input data for the requirements specification document to develop the executive unit with the electromotor, reduction gear and output shaft position sensor, and the control box. Functional mockups of the executive unit, control box, as well as the computer-controlled technological test console were manufactured on the basis of the requirements specification documents. The required scope of the laboratory-development tests of the functional mock-up of the servo drive was conducted. Results of the conducted activities confirm the achievement of the required accuracies of the servo drive in the laboratory environment.

Key words: control system, permanent-field synchronous motor, mathematical model, computational analysis

Bibliography:
1. Programma «Mayak», raketa kosmicheskogo naznacheniya, marsheviy dvigatel’ pervoi stupeni: Techn. proekt. Dnepropetrovsk: GP KB «Yuzhnoye», 2015. 490 p.
2. Controller marshevogo dvigatelya pervoi stupeni RKN: Poyasnitelnaya zapiska. Dnepr: GP KB «Yuzhnoye», 2017. 108 p.
3. Marsheviy dvigatel pervoi stupeni RKN: Technicheskoe zadanie na razrabotku electromechanicheskogo privoda mechanizmov drosselya i regulyatora raschoda goryuchego. Dnepr: GP KB «Yuzhnoye», 2016. 68 p.
4. Basharin A. V., Novikov V. A., Sokolovskiy G. G. Upravlenie electroprivodami: Uch. posob. dlya VUZov. L.: Energoizdat, 1982. 392 p.
5. Makarov I. M., Menskiy B. M. Lineinye avtomaticheskie systemy. – 2-e izd., pererab. i dop. M.: Mashinostroenie, 1982. 504 p.
6. Otchet po rezultatam ispytania maketnogo obraztsa electromechanicheskogo privoda mechanizmov drosselya i regulyatora goruchego. Dnepr: GP KB «Yuzhnoye», 2018. 50 p.
Downloads: 33
Abstract views: 
584
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Dublin; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Unknown Melbourne;2
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
1.1.2023 On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism https://journal.yuzhnoye.com/content_2023_1-en/annot_1_1_2023-en/ Thu, 11 May 2023 15:25:30 +0000 https://test8.yuzhnoye.com/?page_id=26682
Sokolov A.
]]>

1. On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 3-13

DOI: https://doi.org/10.33136/stma2023.01.003

Language: Ukrainian

Annotation: Substantiation of the research tools has been performed as a part of methodology development for the air and missile defense system. The problem under consideration is very complex due to the multifactorial nature of the research object, its qualitative variety and manifold structure, incomplete definition of the problem statement. Furthermore, the ability of modern technologies to produce different arms systems, which are capable of carrying out same class tasks, considerably increases the risk of making not the best decisions. Based on this, as well as taking into account the sharp increase in the cost of weaponry, the considered problem is classified as an optimization one that should be solved through the theory of operations research. In this theory, such task is viewed as a mathematical problem, and mathematical simulation is the basic method of research. The main types of mathematical models, their areas of application have been considered as a part of the analysis. The classification of mathematical models has been indicated according to the scale of reproduced operations, purpose, and goal orientation. Quantitative and qualitative correlation of forces has been accepted as the efficiency criterion, which determines a goal orientation of the model. The problems related to this have been shown. In particular, searching for the compromise between simplicity of the mathematical model and its adequacy to the research object is among these problems. Two of the basic approaches to principles of the military operation model construction and its assessment have been considered. The first is implemented through modeling of the combat operations. The second approach is based on the assumption that different armament types can be compared based on their contribution to the outcome of the operation, and on the possibility to assign «a weighting coefficient» named as a combat potential to each of these types. The modern level of problem solving related to this method has been shown. The reasonability of its application in the considered task, including the definition of forces correlation of the opposing parties, has been substantiated. The basic regulations of the construction concept of the required mathematical model and tools for its research have been formulated based on the analysis results: the assigned problem should be solved by analytical methods through the theory of operations research; the analytical model is the most acceptable conception of the analyzed level of the military operation; the synthesis of the model should be based on the idea of a combat potential. At the same time, it should be taken into account that the known approach to the definition of forces correlation, which uses the combat potential method, has a number of essential limitations, including the methodological ones. Therefore, within the bounds of further research, this approach requires the development both in terms of improving the reliability of the single assessment and in terms of giving the system qualities to the synthesized mathematical model.

Key words: multifunctional system, mathematical model, military unit, combat potential, correlation of forces, defensive sufficiency

Bibliography:
  1. Korshunov Yu. M. Matematicheskie osnovy kibernetiki. M., 1972. 376 s.
  2. Pavlovskiy R. I., Karyakin V. V. Ob opyte primeneniya matematicheskih modeley. Voennaya mysl. № 3. S. 54-57.
  3. Katasonov Yu. V. SShA: voennoe programmirovanie. M., 1972. 228 s.
  4. Analiz opyta ministerstva oborony SShA po sovershenstvovaniyu systemy plannirovaniya i upravleniya razrabotkami vooruzhenniya. TsIVTI, otchet № 11152 po NIR. M., 1967.
  5. Sokolov A. Razvitie matemaicheskogo modelirovaniya boevyh deistviy v armii SShA. Zarubezhnoye voennoe obozrenie. № 8. S. 27-34.
  6. Chuev Yu. V. Issledovanie operatsiy v voennom dele. M., 1970. 256 s.
  7. Yevstigneev V. N. K voprosu metodologii matematicheskogo modelirovaniya operatsii. Voennaya mysl. № 17. S. 33-41.
  8. Fendrikov I., Yakovlev V. I. Metody raschetov boevoy effectivnosti vooruzhennia. M., 1971. 224 s.
  9. Neupukoev F. O podhode k otsenke boevyh vozmozhnostey i boevoy effectivnosti voisk. Voennaya mysl. № 11. S. 70-72.
  10. AgeevYu. D., Geraskin A. P. K voprosu o povyshenii dostovernosti otsenki sootnosheniya sil protivoborstvuyuschih storon. Voennaya mysl. № 4. S. 54-58.
  11. Aleshkin A. V. Otsenka i soozmerenie sil voyuuschih storon s uchetom kachestva sredstv porazhenya. Voennaya mysl. № 10. S. 69-76
  12. Ponomarev O. K. O metodah kolichestvennoy i kachestvennoy otsenki sil storon. Voennaya mysl. № 4. S. 41-46.
  13. Luzyanin V. P., Elizarov V. S. Podhod k opredeleniyu sostava gruppirovki sil i sredstv oboronnoy dostatochnosti. Voennaya mysl. № 11. S. 25-29.
  14. SpeshilovL. Ya., Pavlovskiy R. I., Kabysh A. I. K voprosu o kolichestvenno-kachestvennoy otsenke sootnosheniya sil raznorodnyh gruppirovok voisk. Voennaya mysl. № 5.
  15. . Strelchenko B. I., Ivanov V. A. Nekotoye voprosy otsenki sootnosheniya sil i sredstv v operatsii. Voennaya mysl. № 10. S. 55-61.
  16. Morozov N. A. O metodologii kachestvennogo analiza bolshih voennyh system. Voennaya mysl. № 7. S. 19-22.
  17. Terehov A. G. O metodike rascheta sootnosheniya sil v operatsii. Voennaya mysl. № 9. S. 51-57.
  18. Tsygichko V. A., Stokli F. Metod boevyh potentsialov. Istoria i nastoyaschee. Voennaya mysl. № 4. S. 23-28.
  19. BoninA. S. Osnovnye polozheniya metodicheskyh podhodov k otsenke boevyh potentsialov i boevyh vozmozhnostey aviatsionnyh formirovaniy. Voennaya mysl. № 1. S. 43-47.
  20. Bonin A. S., Gorchitsa G. I. O boevyh potentsialah obraztsov VVT, formirovaniy i sootnosheniyuah sil gruppirovok storon. Voennaya mysl. № 4. S. 61-67.
  21. SereginG. G., Strelkov  N., Bobrov V. M. Ob odnom podhode k raschetu znacheniy boevyh potentsialov perspektivnyh sredstv vooruzhenniy. Voennaya mysl. 2005. № 10. S. 32-38. https://doi.org/10.1016/S1097-8690(05)70764-2
  22. Morozov N. A. Esche raz o boevyh potentsialah. Voennaya mysl. № 9. S. 75-79.
  23. Naryshkin V. G. O pokazatelyah boevogo potentsiala voinskyh formirovaniy. Voennaya mysl. № 1. S. 68-72.
  24. Kostin N. A. Metodologicheskiy podhod k opredeleniyu boevyh potentsialov voiskovyh formirovanniy. Voennaya mysl. № 10. S. 44-48
  25. Ostankov V. I. Obosnovanie boevogo sostava gruppirovok voisk (sil). Voennaya mysl. № 1. S. 23-28.
Downloads: 43
Abstract views: 
834
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Columbus; Los Angeles; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Mountain View; Seattle; Seattle; Portland; Des Moines; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Ukraine Dnipro; Dnipro; Dnipro; Dnipro; Dnipro; Dnipro;7
Belgium Brussels1
Finland Helsinki1
Germany1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
1.1.2023 On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism
1.1.2023 On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism
1.1.2023 On the development of a methodology for building air and missile defense systems. Explanation of the investigation mechanism

Keywords cloud

]]>