Search Results for “The Institute of Technical Mechanics, Dnipro, Ukraine” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 21:27:19 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “The Institute of Technical Mechanics, Dnipro, Ukraine” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems https://journal.yuzhnoye.com/content_2020_1-en/annot_2_1_2020-en/ https://journal.yuzhnoye.com/?page_id=31001
2 Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 1 ; The Institute of Technical Mechanics, Dnipro, Ukraine 2 Page: Kosm.
]]>

2. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 13-25

DOI: https://doi.org/10.33136/stma2020.01.013

Language: Russian

Annotation: The scientific and methodological propositions for the designing single-stage guided missiles with the solid rocket motors for advanced multiple launch rocket systems are defined. The guided missiles of multiple launch rocket system are intended for delivering munitions to the given spatial point with required and specified kinematic motion parameters at the end of flight. The aim of the article is an analysis of the development trends of the guided missiles with the solid rocket motors for the multiple launch rocket systems, identifying the characteristics and requirements for the flight trajectories, design parameters, control programs, overall dimensions and mass characteristics, structural layout and aerodynamic schemes of missiles. The formalization of the complex task to optimize design parameters, trajectory parameters and motion control programs for the guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories is given. The complex task belongs to a problem of the optimal control theory with limitations in form of equa lity, inequality and differential constraints. To simplify the problem, an approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as a material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of the criterion function that was used for determination of the optimal parameters, programs and characteristics. The mathematical model of the guided missile provides adequate accuracy for design study to determine depending on the main design parameters: overall dimensions and mass characteristics of the guided missile in general and its structural comp onents and subsystems; power, thrust and consumption characteristics of the rocket motor; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by determining design and trajectory parameters, overall dimensions and mass characteristics, power and ballistic characteristics of two guided missiles with wings for advanced multiple launch rocket systems produced by the People’s Republic of China, using the limited amount of information available in the product catalog.

Key words: multiple launch rocket systems (MLRS), complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the guided missiles

Bibliography:
1. Degtyarev A. V. Raketnaia tekhnika. Problemy i perspektivy: izbrannye nauchno-tekhnicheskie publikatsii. Dnepropetrovsk, 2014. 420 s.
2. Pro zatverdzhennia Poriadku zdiisnennia derzhavnoho kontriliu za mizhnarodnymy peredachamy tovariv podviinoho vykorystannia:Postanova Kabinetu Ministriv Ukrainy vid 28 sichnia 2004 r. № 86. Date: 29.11.2018. URL: https://zakon.rada.gov.ua/laws/show/86-2004-%D0%BF (Access date 01.09.2019).
3. Catalogue China Aerospase Long-march International. February, 2017. 136 p.
4. Reaktivnye sistemy zalpovogo ognia zarubezhnykh stran: obzor po materialam otkrytoi pechati za 1987–2016 gg. i interneta. Dnipro, 2016. Ч. I. 205 s.
5. Upravliaemye OTRK i TRK stran mira: obzor po materialam otkrytoi otechestvennoi i zarubezhnoi pechati za 2008–2014 gg. i interneta. Dnipro, 2014. 162 s.
6. Tail controlled rocket demonstrates near-vertical impact at extended range. URL: https://www.army.mil/article-amp/207357/tail_controlled_rocket_demonstrates_near_vertical_impact_at_extended_range (Access date 01.09.2019).
7. SY-400 Short-Range Ballistic Missile. URL: http://www.military-today.com/missiles/sy_400.htm (Access date 01.09.2019).
8. Vohniana “Vilkha”: nova vysokotochna systema zalpovoho vohnyu. Vpershe – detalno. URL: https://defence-ua.com/index.php/statti/4588-vohnyana-vilkha-nova-vysokotochna-systema-zalpovoho-vohnyu-vpershe-detalno (Access date 01.09.2019).
9. Gurov S. V. Reaktivnye sistemy zalpovogo ognia: obzor. 1-е izd. Tula, 2006. 432 s.
10. The new M30A1 GMLRS Alternate Warhead to replace cluster bombs for US Army Central 71601171. URL: https://www.armyrecognition.com/weapons_defence_industry_military_technology_uk/the_new_m30a1_gmlrs_alternate_warhead_to_replace_cluster_bombs_for_us_army_central_71601171.html (Access date 01.09.2019).
11. High-Mobility Artillery Rocket System (HIMARS), a member of MLRS family. URL: https://army-technology.com/projects/himars/ (Access date 01.09.2019).
12. SR-5 Multiple Launch Rocket System. URL: http://www.military-today.com/artillery/sr5.htm (Access date 01.09.2019).
13. Effectivnost slozhnykh system. Dinamicheskie modeli / V. А. Vinogradov, V. А. Hrushchansky, S. S. Dovhodush i dr. М., 1989. 285 s.
14. Ilichev А. V., Volkov V. D., Hrushchansky V. А. Effectivnost proektiruemykh elementov slozhnykh system: ucheb. posobie. М., 1982. 280 s.
15. Krotov V. F., Gurman V. I. Metody I zadachi optimalnogo upravleniia. М., 1973. 446 s.
16. Pontriagin L. S., Boltiansky V. G., Gamkrelidze R. V., Mishchenko Е. F. Matematicheskaia teoriia optimalnykh protsesov. М., 1969. 385 s.
17. Tarasov Е. V. Algoritm optimalnogo proektirovaniia letatelnogo apparata. М., 1970. 364 s.
18. Shcheverov D. N. Proektirovanie bespilotnykh letatelnykh apparatov. М., 1978. 264 s.
19. Siniukov А. М., Volkov L. I., Lvov А. I., Shishkevich А. М. Ballisticheskaia raketa na tverdom toplive / pod red. А. М. Siniukova. М., 1972. 511 s.
20. Burov М. А., Varfolomeev V. I., Volkov L. I. Proektirovanie i ispytanie ballisticheskikh raket / pod red. V. I. Varfolomeeva, М. I. Kopytova. М., 1970. 392 s.
21. Siutkina-Doronina S. V. K voprosu optimizatsii proektnykh parametrov i programm upravleniia raketnogo ob’ekta s raketnym dvigatelem na tverdom toplive. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia. 2017. № 2 (137). S. 44–59.
22. Aksenenko A. V., Baranov E. Yu., Hursky A. I., Klochkov A. S., Morozov A. S., Alpatov A. P., Senkin V. S., Siutkina-Doronina S. V. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, parametrov traektorii i programm upravleniia dvizheniem raketnogo ob’ekta. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2018. Vyp. 2 (116). S. 101–116. https://doi.org/10.33136/stma2018.02.101
23. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, programm upravleniia, ballisticheskikh, energeticheskikh i gabaritno-massovykh kharakteristik upravliaemykh raketnykh ob’ektov, osushchestvliaiushchikh dvizhenie po aeroballisticheskoi traektorii: otchet po NIR / ITM NANU i GKAU, GP “KB “Yuzhnoye”. Dnepropetrovsk, 2017. 159 S.
24. Senkin V. S. K Vyboru programm upravleniia dvizheniem raketnogo ob’ekta po ballisticheskoi traektorii. Tekhnicheskaia mekhanika. 2018. № 1. S. 48–59.
25. Alpatov A. P., Senkin V. S. Metodicheskoe obespechenie dlia vybora oblika, optimizatsii proektnykh parametrov i programm upravleniia poletom rakety-nositelia. Tekhnicheskaia mekhanika. 2013. № 4. S. 146–161.
26. Alpatov A. P., Senkin V. S. Kompleksnaia zadacha optimizatsii osnovnykh proektnykh parametrov i programm upravleniia dvizheniem raket kosmicheskogo naznacheniia. Tekhnicheskaia mekhanika. 2011. № 4. S. 98–113.
27. Senkin V. S. Optimizatsiia proektnykh parametrov rakety-nositelia sverkhlegkogo klassa. Tekhnicheskaia mekhanika. 2009. № 1. S. 80–88.
28. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
29. Razumev V. F., Kovalev B. K. Osnovy proektirovaniia ballisticheskikh raket na tverdom toplive: ucheb. posobie dlia vuzov. М., 1976. 356 s.
30. Erokhin B. Т. Teoreticheskie osnovy oroektirovaniia RDTT. М., 1982. 206 s.
31. Abugov D. I., Bobylev V. М. Teoriia i raschet raketnykh dvigatelei tverdogo topliva: uchebnik dlia mashinostroitelnykh vuzov. М., 1987. 272 s.
32. Shishkov А. А. Gasodinamika porokhovykh raketnykh dvigatelei: inzhenernye metody rascheta. М., 1974. 156 s.
Downloads: 42
Abstract views: 
3509
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Matawan; Baltimore; Plano; Miami; Columbus; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Boardman; Seattle24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Latvia Riga; Riga2
Ukraine Dnipro; Dnipro2
China Shanghai1
Finland Helsinki1
Unknown1
India Mumbai1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Keywords cloud

]]>
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM https://journal.yuzhnoye.com/content_2024_1-en/annot_11_1_2024-en/ Mon, 17 Jun 2024 08:41:21 +0000 https://journal.yuzhnoye.com/?page_id=35014
Poliakov Institute of geotechnical mechanics 1 ; Ukrainian State University of Science and Technologies 2 ; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 3 Page: Kosm. To reach these objectives, the known relations for calculating the auger conveyor parameters were applied, as well as the fundamental laws of the granular media mechanics, the principal equations of asynchronous motor electrodynamics, and the behavior of granular media when moving it with the auger conveyor, experimentally studied by the domestic authors.
]]>

11. Parameters calculation of the lunar regolith transport system

Organization:

National Academy of Sciences of Ukraine, M.S. Poliakov Institute of geotechnical mechanics1; Ukrainian State University of Science and Technologies2; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2024, (1); 93-101

DOI: https://doi.org/10.33136/stma2024.01.093

Language: Ukrainian

Annotation: The objective of this article is to develop a scientifically proven method of calculation of the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electrical motor, for different densities and porosities of conveyed materials, the geometrical parameters of the auger, and the specificity of the gravitational fields at the place of transportation. Another objective is to investigate potential limitations of the auger parameters when transporting lunar regolith. To reach these objectives, the known relations for calculating the auger conveyor parameters were applied, as well as the fundamental laws of the granular media mechanics, the principal equations of asynchronous motor electrodynamics, and the behavior of granular media when moving it with the auger conveyor, experimentally studied by the domestic authors. It gave the possibility, for the first time for the lunar environment, to suggest a procedure to calculate the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electric motor, using known geometrical parameters of the mainline and pipeline, the auger conveyor filling ratio and the parameters of the selected electrical motor. It gave the possibilities to study how the filling ratio of the auger conveyor influences its principal performance parameters and determine potential limitations of the geometrical parameters and the filling ratios of auger conveyors according to the parameters and features of the selected electrical motor. The allowable transportation distances, diameters, other geometrical parameters of auger conveyors, and conveyor filling ratios with the selected electrical motor have been determined. It has been proven that the solutions based on using auger conveyors would be most rational for transporting loose lunar regolith over the Moon’s surface because the auger conveyors are compact and adaptable, and they can be placed inside tubes and laid under the day surface, thereby ensuring the continuous transportation process. Furthermore, they are capable of autonomous operation and can use the electricity produced by solar arrays.

Key words: Moon, regolith, auger, electric motor, capacity, power

Bibliography:

1. Pustovgarov A. A., Osinoviy G. G. Kontseptsiya shlyuzovogo modulya misyachnoi bazy. ХХV Mizhnarodna molodizhna naukovo-praktychna conf. «Lyudyna i cosmos». Zbirnyk tez, NTsAOM, Dnipro, 2023. S. 86 – 87.
2. Semenenko P. V. Sposoby transortirovki poleznykh iskopaemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviyukh. P. V. Semenenko, D. G. Groshelev, G. G. Osinoviy, Ye. V. Semenenko, N. V. Osadchaya. XVII conf. molodykh vchenykh «Geotechnichni problemy rozrobky rodovysch». m. Dnipro, 24 zhovtnya 2019 r. S. 7.
3. Berdnik A. I. Mnogorazoviy lunniy lander. A. I. Berdnyk, M. D. Kalyapin, Yu. A. Lysenko, T. K. Bugaenko. Raketno-kosmichny complexy. 2019. T. 25. №5:3-10. ISSN 1561-8889. https://doi.org/10.15407/knit2019.05.003
4. Semenenko Ye. V., Osadchaya N. V. Traditsionnye i netraditsionnye vydy energii, a takzhe kosmicheskie poleznye iskopaemye v okolozemnom prostranstve. Nauch.-parakt. conf. «Sovremennye raschetno-experimentalnye metody opredeleniya characteristic raketno-kosmicheskoy techniki». m. Dnipro, 10 – 12 grudnya 2019 r. S. 62 – 63.
5. Komatsu pobudue excavator dlya roboty na Misyatsi https://www.autocentre.ua/ua/ news/concept/komatsu-postroit-ekskavator-dlya-raboty-na-lune-1380272.html.
6. Help NASA Design a Robot to Dig on the Moon https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/
7. Robert E. Grimm. Geophysical constaints on the lunar Procellarum KREEP Terrane. Vol. 118, Issue 4. April 2013. P. 768-778. https://agupubs-onlinelibrary-wiley-com.translate. goog/doi/10.1029/2012JE004114?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc
https://doi.org/10.1029/2012JE004114
8. Chen Li. A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector. Kuixian Wei, Yang Li, Wenhui Ma, Yun Lei, Han Yu, Jianzhong Liu. Journal of Rare Earths Vol. 41, Issue 9, September 2023, P. 1429-1436. https://www-sciencedirect-com.translate.goog/science/article/ abs/pii/S1002072122001910?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc https://doi. org/10.1016/j.jre.2022.07.002
9. Moon Village Association https://moon-villageassociation.org/about/
10. GLOBAL MOON VILLAGE. https://space-architect.org/portfolio-item/ global-moon-village//
11. Just G. H. Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilization (ISRU) and recommendations for future excavation experiments. G. H. Just, Smith K., Joy K. H., Roy M. J. https://doi.org/10.1016/j.pss.2019.104746
https://www.sciencedirect.com/science/article/pii/S003206331930162X
12. Anthony J. Analysis of Lunar Regolith Thermal Energy Storage. Anthony J. Colozza Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio NASA Contractor Report 189073. November 1991. S-9 https://denning.atmos.colostate.edu/readings/ lunar.regolith.heat.transfer.pdf
13. Obgruntuvannya vykorystannya shneka dlya utilizatsii vidkhodiv vuglezbagachennya z mozhlyvistyu pidvyschennya bezpeki energetychnoi systemy pidpriemstv. SLobodyannikova I. L., Podolyak K. K., Tepla T. D. Materialy XХІ Mizhnarod. conf. molodykh vchennykh (26 zhovt. 2023 roku, m. Dnipro). Dnipro: IGTM im. M.S. Polyakova NAN Ukrainy, 2023. S. 50–55.
14. Kulikivskiy V. L., Paliychuk V. K., Borovskiy V. M. Doslidzhennya travmuvannya zerna gvintovym konveerom. Konstryuvannya, vyrobnitstvo ta exspluatatsiya silskogospodarskykh mashin. 2016. Vyp. 46. S. 160 – 165. https://doi.org/10.3233/EPL-46204
14. Lyubin M. V., Tokarchuk O. A., Yaropud V. M. Osoblyvosti roboty krutopokhylennykh gvyntovykh transporterov pri peremischenni zernovoi produktsii. Tekhnika, energetika, transport APK. 216. № 3(95). S. 235 – 240.
15. Gevko R. B., Vitroviy A. O., Pik A. I. Pidvyschennya tekhnichnogo rivnya gnuchkykh gvyntovykh konveeriv. Ternopil: Aston, 2012. 204 s.
16. Bulgakov B. M., Adamchyuk V. V., Nadikto V. T., Trokhanyak O. M. Teoretichne obgruntuvannya parametriv gnuchkogo gvintovogo konveera dlya transportuvannya zernovykh materialiv. Visnyk agrarnoi nauki. 2023. № 4(841). S. 59 – 66.
17. New Views of the moon. Reviews in mineralogy and geochemistry. Eds. Joliff B.L., Wieczorek M.A., Shearer C.K., Neal C.R. Mineralogical Society of America. Reviews in mineralogy and geochemistry. 2006. Vol. 60. 721 p. DOI: 10.2138/rmg.2006.60.
18. Semenenko Ye. V. Nauchnye osnovy technologiy hydromechanizatsii otkrytoy razrabotki titan-cyrkonovykh rossypey. Yevgeniy Vladimirovich Semenenko. Kiev: Nauk. dumka, 2011. 232 s.

Downloads: 12
Abstract views: 
703
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Chicago; Ashburn; Los Angeles; San Francisco; Portland5
Germany Falkenstein; Falkenstein2
France1
Unknown1
China Shenzhen1
Israel Haifa1
Ukraine Kremenchuk1
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
3 Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 1 ; The Institute of Technical Mechanics, Dnipro, Ukraine 2 ; Oles Honchar Dnipro National University, Dnipro, Ukraine 3 Page: Kosm.
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 39
Abstract views: 
2488
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; North Bergen; Boydton; Plano; Miami; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Odessa; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs https://journal.yuzhnoye.com/content_2018_2-en/annot_12_2_2018-en/ Thu, 07 Sep 2023 11:38:27 +0000 https://journal.yuzhnoye.com/?page_id=30770
2 Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 1 ; The Institute of Technical Mechanics, Dnipro, Ukraine 2 Page: Kosm.
]]>

12. Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 101-116

DOI: https://doi.org/10.33136/stma2018.02.101

Language: Russian

Annotation: The main scientific and methodological propositions for designing single-stage guided missiles with main solid rocket motors that are intended for delivering payload to the given spatial point with required and specified kinematic motion parameters are defined. The aim of the article is to develop methodology for the early design phase to improve the basic characteristics of guided missiles, including formalization of complex problem to optimize design parameters, trajectory parameters and motion control programs for guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories. The task is defined as a problem of the optimal control theory with limitations in form of equality, inequality and differential constraints. An approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of criterion functional that was used for optimization of design parameters, control programs and basic characteristics of the guided missile. The mathematical model of the guided missile provides adequate accuracy for design study to determine: overall dimensions and mass characteristics of the guided missile in general and its structural components and subsystems; power, thrust and consumption characteristics of the main engine; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by solving design problems. Applications of the developed program were studied to present the research results in a user-friendly form.

Key words: complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the object

Bibliography:
1. Degtyarev A. V. Rocket Engineering: Problems and Prospects. Selected scientific-technical publications. Dnepropetrovsk, 2014. 420 p.
2. Shcheverov D. N. Designing of Unmanned Aerial Vehicles. М., 1978. 264 p.
3. Sinyukov А. М. et al. Ballistic Solid-Propellant Rocket / Under the editorship of A. M. Sinyukov. М., 1972. 511 p.
4. Varfolomeyev V. I. Designing and Testing of Ballistic Rockets / Under the editorship of V. I. Varfolomeyev, M. I. Kopytov. М., 1970. 392 p.
5. Vinogradov V. A., Grushchansky V. A., Dovgodush S. I. et al. Effectiveness of Complex Systems. Dynamic Models. М., 1989. 285 p.
6. Il’ichyov A. V., Volkov V. D., Grushchansky V. A. Effectiveness of Designed Complex Systems’ Elements. М., 1982. 280 p.
7. Krotov V. F., Gurman V. I. Methods and Problems of Optimal Control. М., 1973. 446 p.
8. Pontryagin L. S. et al. Mathematical Theory of Optimal Processes. М., 1969. 385 p.
9. Tarasov E. V. Algorithms of Flying Vehicles Optimal Designing. М., 1970. 364 p.
10. Alpatov A. P., Sen’kin V. S. Complex Task of Optimization of Space Rocket Basic Design Parameters and Motion Control Programs. Technical Mechanics. 2011. No. 4. P. 98-113.
11. Alpatov A. P., Sen’kin V. S. Methodological Support for Selection of Launch Vehicle Configuration, Optimization of Design Parameters and Flight Control Programs. Technical Mechanics. 2013. No. 4. P. 146-161.
12. Sen’kin V. S. Optimization of Super-Light Launch Vehicle Design Parameters. Technical Mechanics. 2009. No. 1. P. 80-88.
13. Sen’kin V. S. Flight Control Optimization and Thrust Optimization of Controllable Rocket Object Main Propulsion System. Technical Mechanics. 2000. No. 1. P. 46-50.
14. Syutkina-Doronina S. V. On Problem of Optimization of Design Parameters and Control programs of a Rocket Object With Solid Rocket Motor. Aerospace Engineering and Technology. 2017. No. 2 (137). P. 44-59.
15. Lebedev А. А., Gerasyuta N. F. Rocket Ballistics. М., 1970. 244 p.
16. Razumov V. F., Kovalyov B. K. Design Basis of Solid-Propellant Ballistic Missiles. М., 1976. 356 p.
17. Yerokhin B. T. SRM Theoretical Design Basis. М., 1982. 206 p.
18. Abugov D. I., Bobylyov V. M. Theory and Calculation of Solid Rocket Motors. М., 1987. 272 p.
19. Shishkov А. А. Gas Dynamics of Powder Rocket Motors. М., 1974. 156 p.
20. Sen’kin V. S. Complex Task of Optimization of Super-Light Solid-Propellant Launch Vehicle Design Parameters and Control Programs. Technical Mechanics. 2012. No. 2. P. 106-121.
21. Methodological Support to Determine in Initial Designing Phase the Design Parameters, Control Programs, Ballistic, Power, and Mass-Dimensional Characteristics of Controllable Rocket Objects Moving In Aeroballistic Trajectory: R&D Report. ITM of NASU and SSAU, Yuzhnoye SDO. Inv. No. 40-09/2017. 2017. 159 p.
Downloads: 41
Abstract views: 
798
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn; Ashburn23
Unknown; Brisbane;;4
Ukraine Kharkiv; Dnipro; Dnipro; Kyiv4
Singapore Singapore; Singapore; Singapore; Singapore4
Germany Frankfurt am Main; Falkenstein2
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Keywords cloud

]]>
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime https://journal.yuzhnoye.com/content_2019_1-en/annot_5_1_2019-en/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27710
3 Organization: The Institute of Technical Mechanics, Dnipro, Ukraine 1 ; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 2 ; Oles Honchar Dnipro National University, Dnipro, Ukraine 3 Page: Kosm.
]]>

5. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Language: Russian

Annotation: This article contains results of methodology and standards development for life prediction of launch site structures to launch various types’ launch vehicles into near-earth orbit. Launch sites have been built in various countries of the world (European Union, India, China, Korea, Russia, USA, Ukraine, France, Japan, etc.). In different countries they have their own characteristics, depending on the type and performance of the launch vehicles, infrastructure features (geography of the site, nomenclature of the space objects, development level of rocket and space technology), problems that are solved during launches, etc. Solution of various issues, arising in the process of development of the standards for justification of launch site life is associated with the requirement to consider complex problems of strength and life of nonuniform structural elements of launch sites and structures of rocket and space technology. Launch sites are the combination of technologically and functionally interconnected mobile and fixed hardware, controls and facilities, designed to support and carry out all types of operations with integrated launch vehicles. Launch pad, consisting of the support frame, flue duct lining and embedded elements for frame mounting, is one of the principal components of the launcher and to a large extent defines the life of the launch site. Main achievements of Ukrainian scientists in the field of strength and life are specified, taking into account the specifics of various branches of technology. It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Main methodological steps of launch site structures life prediction are defined. Service limit of launch site is suggested to be the critical time or the number of cycles (launches) over this period, after which the specified limiting states are achieved in the dangerous areas of the load-bearing elements: critical cracks, destruction, formation of unacceptable plastic deformations, buckling failure, corrosion propagation, etc. Classification of loads acting on the launch sites is given. The useful life of launch site is associated with estimation of the number of launches. Concept of low and multiple-cycle fatigue is used. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.

Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur

Bibliography:

1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.

Downloads: 44
Abstract views: 
789
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Springfield; Matawan; North Bergen; Plano; Miami; Miami; Miami; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Unknown Hong Kong;2
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Keywords cloud

]]>
5.1.2016 Scientific-Technical Base for Creation of Detonation Solid Rocket Motors https://journal.yuzhnoye.com/content_2016_1/annot_5_1_2016-en/ Tue, 23 May 2023 12:59:41 +0000 https://journal.yuzhnoye.com/?page_id=27608
1 Organization: The Institute of Technical Mechanics, Dnipro, Ukraine 1 ; SE “PA Yuzhny Machine-Building Plant”, Dnipro, Ukraine 2 Page: Kosm.
]]>

5. Scientific-Technical Base for Creation of Detonation Solid Rocket Motors

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; SE “PA Yuzhny Machine-Building Plant”, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2016 (1); 34-45

Language: Russian

Annotation: The results of developments and investigations are presented in the field of detonation solid rocket motors (DSRM) conducted jointly by the Institute of Technical Mechanics of the National Academy of Science of Ukraine and State Space Agency of Ukraine (ITM of NASU and SSAU, hereafter ITM) and Yuzhnoye State Design Office (hereafter Yuzhnoye SDO). The physical basis, design peculiarities of DSRM with continuous (not pulsed) operation mode, the test base characteristics, the results of development and firing tests of DSRM test models for some space rocketry items are described. The assessments are made of achieved and prospective levels of DSRM technical characteristics, their application areas and a number of problems requiring solution.

Key words:

Bibliography:
Downloads: 32
Abstract views: 
454
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Columbus; Detroit; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro; Dnipro2
Unknown1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2016 Scientific-Technical Base for Creation of Detonation Solid Rocket Motors
5.1.2016 Scientific-Technical Base for Creation of Detonation Solid Rocket Motors
5.1.2016 Scientific-Technical Base for Creation of Detonation Solid Rocket Motors
]]>
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse https://journal.yuzhnoye.com/content_2019_2-en/annot_4_2_2019-en/ Mon, 15 May 2023 15:45:37 +0000 https://journal.yuzhnoye.com/?page_id=27206
2 Organization: The Institute of Technical Mechanics, Dnipro, Ukraine 1 ; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 2 ; Oles Honchar Dnipro National University, Dnipro, Ukraine 3 Page: Kosm.
]]>

4. Numerical simulation of behavior of elastic structures with local stiffening elements

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (2); 25-34

DOI: https://doi.org/10.33136/stma2019.02.025

Language: Russian

Annotation: Availability of different inclusions, stiffenings, discontinuities (holes, voids and flaws) are the factors that cause structural irregularity and are typical for structural elements and buildings from various current technology areas, in particular aerospace technology. They significantly influence the deformation processes and result in stress concentration, which can cause local damages or malconformations and as a result lead to impossibility to further use the structure. Materials used are also heterogeneous in its structure. Inclusions can simulate thin stiffening elements, straps, welded or glue joints. It is necessary to detect the thin inclusions when phase transformations of materials are studied, for example, when martensite structures are formed. Study of the various bodies with inclusions is very important in the powder technology, ceramics, etc., where powder, previously compressed under high pressure, is sintered at high temperatures. Use of surface hardening that increases working efficiency of the structural elements is prospective in many engineering sectors. It is important to develop discrete hardening, implemented through manufacturing schemes of particular type. When discrete hardenings impact on the structural elements mode of deformation is simulated, they can also be considered as inclusions of specific structure. Inclusions can also simulate banding of the ferritic-pearlitic structure in the microstructure, related to the complex preloading under material plastic forming. It is advisable to use numerical methods for studies that are universal and suitable for objects of various shapes, sizes and types of loading. Main numerical methods are finite difference method, boundary element method, variation grid-based method, finite element method, method of local variations. This article features ANSYS – based computer simulation of the aerospace structural element behavior – a rectangular plate with two extended elastic inclusions of different rigidity, simulating elastic heterogeneities of structures and materials.

Key words: finite-element method, strength, inclusions, computer simulation

Bibliography:

1. Brebbia K., Telles J., Wroubell L. Metody granichnykh elementov / per. s angl. M., 1987. 524 s.
2. Vasidzu K. Variatsionnye metody v teorii uprugosti i plastichnosti / per. s angl. M., 1987. 544 s.
3. Vilchevskaya Ye. N., Korolev I. K., Freidin A. B. O fazovykh prevrasheniyakh v oblasti neodnorodnosti materiala. Ch. 2: Vzaimideistvie treschiny s vklyucheniem, preterpevayushim fazovoe prevraschenie. Izv. RAN. Mekhanika tverdogo tela. 2011. № 5. S. 32–42.
4. Hart E. L. Konechnoelementniy analiz ploskodeformiruemukh sred s vklyucheniyami. Visn. Dnipropetr. un-tu. Ser.: Mekhanika. 2011. Vyp. 15, t. 2. S. 39–47.
5. Hart E. L., Hudramovich V. S. Chislennoye modelirovanie povedeniya ploskodeformiruemykh strukturirivannykh sred na osnove proektsionno-iteratsionnykh ckhem MKE. Matemat. modelirovanie v mekh. deform. tel i konstruktsiy: materialy 24-oy Mezhdunarod. conf. (SPb., Rossiya, 2011). SPb., 2011. T. 11. S. 37–39.
6. Hart E. L., Hudramovich V. S. Chislennoe modelirovanie structurirovannykh sred. Dopovidi NAN Ukrainy. 2012. № 5. S. 49–56.
7. Hart E. L., Hudramovich V. S. Proektsionno-iteratsionnaya modifikatsia metoda lokalnykh variatsiy dlya zadach s kvadratychnym funktsionalom. Prikl. Matematika I mekhanika. 2016. T. 80, № 2. S. 218–230. https://doi.org/10.1016/j.jappmathmech.2016.06.005
8. Hudramovich V. S. Osobennosti neuprugogo povedeniya neodnorodnykh obolochechnykh elementov konstruktsiy. Aktualnye problem mekhaniki: monografia/ za red. M. V. Polyakova. Dnipro, 2018. S. 195–207.
9. Hudramovich V. S., Hart E. L. Konechnoelementniy analiz processa rasseyanogo razrusheniya ploskodeformiruemykh uprugoplastichnykh sred s lokalnymi contsetratami napryazheniy. Uprugost’ I neuprugost’: Materialy Mezhdunarod. nauchn. symp. po problemam mekhaniki deformiruemykh tel, posvyaschennogo 105-letiyu so dnya rozhdeniya A. A. Ilyushina (Moskow, 2016 ). M., 2016. S. 158–161.
10. Hudramovich V. S., Hart E. L., Strunin K. A. Modelirovanie processa deformirovaniya plastiny s uprugimi protyazhonnymi vklyucheniyami na osnove metoda konechnykh elementov. Tekhn. mechanika. 2014. № 2. S. 12–24.
11. Hudramovich V. S., Demenkov A. F., Konyukhov S. N. Nesuschaya sposobnost’ neidealnykh tsilindricheskykh obolochek s uchetom plasticheskykh deformatsiy. Prochnost’ I nadezhnost’ elementov konstruktsiy: sb. nauchn. tr. K., 1982. S. 45–48.
12. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliyanie vyrezov na prochnost’ tsilindrycheskykh otsekov raket-nositeley pri neuprugom deformirovanii materiala. Kosmichna nauka I technologia. 2017. T. 23, № 6. S. 12–20.
13. Hudramovich V. S., Levin V. M., Hart E. L. i dr. Modelirovanie processa deformirovaniya plastinchatykh elementov zherezobetonnykh konstruktsiy teploenergetiki s ispolzovaniem MKE. Techn. mechanika. 2015. № 2. S. 59–70.
14. Hudramovich V. S., Reprintsev A. V., Ryabokon’ S. A., Samarskaya E. V. Otsenka resursa konstruktsiy raketno-kosmicheskoy techniki pri uchete vliyaniya kontsetratov napryazheniy v vide otverstiy. Technicheskaya diagnostika i nerazrushaushiy control. 2016. № 2. S. 28–36.
15. Gultyaev V. I., Zubchaninov V. G., Zubchaninov D. V. Strukturnye izmeneniya stali 45 v processe eyo deformirovaniya. Izv. Tulskogo gos. un-ta. 2005. Vyp. 8. S. 26-29.
16. Zenkevich O., Morgan K. Konechnye elementy i aproximatsia / per. s angl. M., 1986. 318 s.
17. Kashanov A. E. Perspektivy sotrudnichestva NAN Ukrainy, NAN Belarusi i Yuzhnoye SDO dlya resheniya problemnykh voprosov kosmicheskoy otrasli. Raketnaya technika. Novye vozmozhnosti: nauchn.-techn. sborn. / pod red. A. V. Degtyareva. Dnepr, 2019. S. 281–294.
18. Koval’ Y. N., Lobodyuk V. A. Deformatsionnye i relaksatsionnye yavlenia pri prevraschenniyakh martensitnogo typa. K., 2010. 288 s.
19. Lyashenko B. A., Kuzema Y. A., Digahm M. S. Uprochnenie poverkhnosti metallov pokrytiyami diskretnoy struktury s povyshennoy adhezionnoy i cohezionnoy stoykostyu. К., 1984. 57 s.
20. Stern M. B., Rud’ V. D. Mekhanichni ta kompyuterni modeli konsolidatsii granulyuovanykh seredovysh na osnovi poroshkiv metaliv i keramiki pri deformuvanni ta spikanni / za red. V. V. Skorokhoda. Lutsk, RVV LNTU, 2010. 232 s.
21. ANSYS release 18.1 Documentation for ANSYS WORKBENCH: ANSYS Inc.
22. Hart E., Hudramovich V. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance–2012: Proc. of Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). P. 157–164.
23. Hart E., Hudramovich V. Projection-iterative schemes for the realization of the finite-element method in problems of deformation of plates with holes and inclusions. J. Math. Sci. 2014. Vol. 203. № 1. P. 55–69. https://doi.org/10.1007/s10958-014-2090-x
24. Hudramovich V. S. Features of nonlinear deformation and critical states shell structures with geometrical imperfections. Int. Appl. Mech. 2006.Vol. 42, № 12. P. 1323–1355. https://doi.org/10.1007/s10778-006-0204-y
25. Hudramovich V. S., Hart E. L., Ryabokon’ S. A. Elastoplastic deformation of nonhomogeneous plates. J. Eng. Math. 2013. Vol. 78, № 1. P. 181–197. https://doi.org/10.1007/s10665-010-9409-5
26. Hudramovich V. S., Hart E. L., Strunin K. A. Modeling of the behavior plane-deformable elastic media with elongated elliptic and rectangular inclusions. Materials Science. 2017. Vol. 52, № 6. P. 768–774. https://doi.org/10.1007/s11003-017-0020-z
27. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: Procedings Int. Conf. (Helsinki, Finland, 1999). Amsterdam/ New York / Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
28. Olevsky E. A., Maximenko A. and Van Der Biest O. On-line sintering strength of ceramic composites. Int. J. Mech. Sci. 2002. Vol. 44. P. 755–771. https://doi.org/10.1016/S0020-7403(02)00005-X

Downloads: 39
Abstract views: 
560
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; North Bergen; Plano; Columbus; Columbus; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
China Shanghai1
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse
4.2.2019 Numerical simulation of behavior of elastic structures with local stiffening elementse

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>