Search Results for “Ushkin M. P.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:09:48 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Ushkin M. P.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 17.1.2017 Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC https://journal.yuzhnoye.com/content_2017_1/annot_17_1_2017-en/ Wed, 28 Jun 2023 12:10:36 +0000 https://journal.yuzhnoye.com/?page_id=29518
Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. Notes on Conversion Space Rocket Program. Pushkino, 2015. http://kosmotras.ru . Content 2017 (1) Downloads: 18 Abstract views: 389 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Monroe; Ashburn; Seattle; Ashburn; Boardman; Portland; Boardman; Ashburn; Boardman 9 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 7 Ukraine Dnipro; Dnipro 2 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Zhilenkova N.
]]>

17. Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 107-110

Language: Russian

Annotation: The article presents briefly the peculiarities of designing and ground development testing of dispensers turn drive system, the system composition and functioning principle are described.

Key words:

Bibliography:
1. Mikhailov V. S. Space Dnepr. Notes on Conversion Space Rocket Program. Pushkino, 2015. 156 p.
3. Gontarovsky V. A., Makarenko A. A., Shevtsov E. I. Role and Place of Functional Tests in Development of Strategic Missile Systems. Space Technology. Missile Armaments: Collection of Scientific-technical articles. 2014. Issue 1. 164 p.
Downloads: 18
Abstract views: 
389
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Monroe; Ashburn; Seattle; Ashburn; Boardman; Portland; Boardman; Ashburn; Boardman9
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Dnipro2
17.1.2017 Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC
17.1.2017 Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC
17.1.2017 Peculiarities of Design and Development Test of Dispenser Turning Actuator System for SHM with Iridium NEXT SC
]]>
17.1.2019 Development of Prospective Small-Size Auxiliary SMR of New Type https://journal.yuzhnoye.com/content_2019_1-en/annot_17_1_2019-en/ Wed, 24 May 2023 16:00:35 +0000 https://journal.yuzhnoye.com/?page_id=27722
Development of Prospective Small-Size Auxiliary SMR of New Type Authors: Toloch’yants G. Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. D., Kukushkin V. Triumph I tragediya systemy upravleniya vektorom tyagi dvigatelya ZD65 vduvom kamernogo gaza v soplo// Kosmicheskaya technika. Proektirovanie zenitnykh upravlyaemykh raket. Gazodynamicheskie i teplophysicheskie process v raketnykh dvigatelyakh na tverdom toplive. Opredelenie coeffitsientov teplootdachi pri modelirovanii zadach v Ansys CFX // More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX Keywords cloud Your browser doesn't support the HTML5 CANVAS tag.
]]>

17. Development of Prospective Small-Size Auxiliary SMR of New Type

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 114-121

DOI: https://doi.org/10.33136/stma2019.01.114

Language: Russian

Annotation: This article considers essentially new versions of small-sized solid propellant rocket engines (SRE), designed for rocket and spacecraft flight control with serial artillery pyroxiline powder taken as grain and solidpropellant gas generators discretely operating into the receiver. Preliminary results of design and experimental activities, performed in Yuzhnoye SDO, showed the possibility in principle and practicability to develop two new types of advanced small-sized SRE. Testing SRE with pyroxiline powder grain showed that the optimum design of the engine can be developed only with the application of the specially developed design procedure of the gas-dynamic flow pattern of powder gases in the engine chamber with definition of field of pressure and velocity. Such procedure has been developed based on Ansys software package. The article describes areas of further design and experimental activities, fulfilment of which will provide development of production models of the described engines. Intraballistic characteristics design procedure, mentioned in the article, can be used to design new type of micropulse SRE with less than 0.1 s burn time. This article will also facilitate definition of the application area for discrete solid-propellant propulsion systems, where they get the edge over the cold gas gas-jet systems.

Key words: procedure, microSRE, gas-jet system, heat-transfer factor

Bibliography:

1. Kovalenko N. D., Kukushkin V. I. Triumph I tragediya systemy upravleniya vektorom tyagi dvigatelya ZD65 vduvom kamernogo gaza v soplo// Kosmicheskaya technika. Raketnoe vooruzhenie: Sb. nauch.-techn. st. 2014. Vyp. 1. Dnepropetrovsk: GP KB «Yuzhnoye». P. 97-106.
2. Oglykh V. V., Vakhromov V. A., Kirichenko A. S., Kosenko M. G. Razrabotka porokhovykh accumulyatorov davlenia dlya minometnogo starta raket – vazhneishee uslovie ego uspeshnoy realizatsii / Kosmicheskaya technika. Raketnoe vooruzhenie: Sb. nauch.-techn. st. 2016. Vyp. 1. Dnepropetrovsk: GP KB «Yuzhnoye». P. 88-92.
3. Golubev K. S., Svetlov V. G. Proektirovanie zenitnykh upravlyaemykh raket. M.: Izd-vo MAH, 2001. 730 p.
4. Oglykh V. V., Tolochyants G. E., Mikhailov N. S., PopkovV. N. Eksperimentalnye issledovania vozmozhnosti sozdania impulsnogo RDTT s malym vremenem raboty/ Kosmicheskaya technika. Raketnoe vooruzhenie: Sb. nauchn.-techn. st. 2016. Vyp. 2. Dnepr: GP KB «Yuzhnoye». P. 30-34.
5. Belyaev N. M., Belik N. P., Uvarov Ye. I. Reaktyvnye systemy upravleniya kosmicheskykh letatelnykh apparatov. M.: Mashinostroenie, 1979. 232 p.
6. Gubertov A. M., Mironov V. V., Borisov D. M. Gazodynamicheskie i teplophysicheskie process v raketnykh dvigatelyakh na tverdom toplive. M.: Mashinostroenie, 2004.
7. Kutateladze S. S. Teploperedacha i hydrodynamicheskoe soprotivlenie. Energoatomizdat, 1990. 368 p.
8. Scherbakov M. A. Opredelenie coeffitsientov teplootdachi pri modelirovanii zadach v Ansys CFX // Dvigateli i energoustanovki aerokosmicheskykh letatelnykh apparatov: Sb. nauch. statey. M.: Nauch.- techn. Centr im. A. Lyulki, 2014.
9. Moskvichev A. V. Primenimost’ modeley turbulentnosti, realizovannykh v Ansys CFX dlya issledovaniya gasodynamiki v schelevom kanale TNA ZhRD. Voronezhskiy gosudarstvenniy technicheskiy universitet, 2015.
10. Magdin E. K., Oglykh V. V., Rozlivan A. B. Tverdotoplivnaya dvigatelnaya ustanovka orientatsii I stabilizatsii descretnogo deistviya dlya upravleniya kosmicheskimi obiektami / Vestn. dvigatelestroiteley. 2017. Vyp. 2. P. 108-111.

Downloads: 17
Abstract views: 
456
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Dublin; Monroe; Ashburn; Seattle; Seattle; Portland; Boardman; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
17.1.2019 Development of Prospective Small-Size Auxiliary SMR of New Type
17.1.2019 Development of Prospective Small-Size Auxiliary SMR of New Type
17.1.2019 Development of Prospective Small-Size Auxiliary SMR of New Type

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins https://journal.yuzhnoye.com/content_2019_1-en/annot_14_1_2019-en/ Wed, 24 May 2023 16:00:23 +0000 https://journal.yuzhnoye.com/?page_id=27719
Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins Authors: Ushkin M. Content 2019 (1) Downloads: 19 Abstract views: 110 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Baltimore; Plano; Monroe; Ashburn; Ashburn; Seattle; Seattle; Portland; San Mateo; Columbus 11 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 7 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Ushkin M. Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins Автори: Ushkin M. Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins Автори: Ushkin M. Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins Автори: Ushkin M.
]]>

14. Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 95-101

DOI: https://doi.org/10.33136/stma2019.01.096

Language: Russian

Annotation: Service life (resource) of the device (system, structure, material) is one of the major factors, which defines the reliable performance of the device or necessity of its replacement. The purpose of this paper is to develop the engineering methodology to estimate the service life of the device to support the well-founded design decision-making. The methodology of estimation of the service life of material or structure is based on the generalization of great amount of Yuzhnoye SDO experimental data and theoretical research on the impact of various factors (properties of materials, loads, storage and operation conditions) on their service life on the ground of strength analysis. At the same time, service life definition is based on the results of stress and deformation analyses and their comparison with strength properties of the applied material (tensile strength and deformation properties). Strength properties of the material should be reduced to test conditions in terms of temperature, pressure, rate of loading, degrees of material aging etc. Methodology provides the estimation of safety margins in all phases of storage and operation of the device, consideration of the impact of the active factors (mass, temperature, loading, process of material aging), performance of calculations for the chosen specific zones of the device. It is shown that the service life estimation is in general case a probabilistic observation because of the random combination of the influencing factors (strength properties, storage and operation conditions, loads). Analysis of experimental and computation data as applied to solid-propellant rocket engine shows that the most dangerous zones, which define the service life, are the fuel charge channel (deformations at launch), a fuel-body coupling zone (breakaway coupling stress) and a “lock” zone of the release collar (concentration of shear and breakaway stresses and deformations). Developed methodological guidelines of the engineering estimate of the service life can be used as the computational basis for the service life of materials and structures in the phase of system design and updating of the assumed design solutions.

Key words: stress, deformation, service life, aging, load

Bibliography:

1. Lyashevskiy A. V., Mironov Ye. A., Vedernikov M. V. Prognozirovanie srokov prigodnosti tverdykh raketnykh topliv metodom Roentgen-computrnoy tomografii// Aviatsionnaya i raketno-kosmichaskaya technika. №2. 2015. P. 118-123.
2. Schubert H., Menke K. Service Life Determination of Rocket Motors by Comprehensive Property Analysis of Propellant Grain / Athens, Greece, May, 1996, Simposium. №41 P. 1-10.
3. Hufferd W. L. Service Life Assessment for Space Launch Vehicles / Athens, Greece, May, 1996, Simposium. №46. P. 1-9.
4. Faulkner G. S., Tod D. Service Life Prediction Methodologies Aspects of the TTCP KTA-14 UK Programme / Athens, Greece, May, 1996, Simposium. – №24. P. 1-13.
5. Francis E. C. (England), Busswell H. J. Improvements in Rocket Motor Service Life Prediction / Athens, Greece, May, 1996, Simposium. №27. P. 1-13.
6. Collingwood G. A., Dixon M. D., Clark L. M., Becker E. B. Solid Rocket Motor Service Life Prediction Using Nonlinear Viscoelastic Analysis and Probabilistic Approach / Athens, Greece, May, 1996, Simposium. №29. P. 1-8.
7. Zharkov A. S., Anisimov I. I., Maryash V. I. Physiko-chimichaskie process v izdeliyakh iz vysokoenergetycheskykh kondensirovannykh materialov pri dlitelnoy ekspluatatsii/ Physicheskaya mezomechanika. №9/4. 2006. P. 93-106.
8. Gul’ V. Ye. Struktura i prochnost’ polymerov. M.: Chimia, 1971. P. 10-23, 189-209.
9. Pavlov P. A. Osnovy engeneernykh raschetov elementov machin na ustalostnuyu i dlitelnuyu prochnost’. L.: Mashinostroenie, 1988. P. 65-70.
10. Ushkin N. P. Sposoby proektnoy otsenki resursa RDTT i obespechaniya ego dlitelnoy ekspluatatsii/ Kosmicheskaya technika. Raketnoye vooruzhenie: Sb. nauch.- techn. st. 2016. Vyp. 1. Dnepropetrovsk: GP KB «Yuzhnoye». P. 110-116.

Downloads: 19
Abstract views: 
110
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Ashburn; Seattle; Seattle; Portland; San Mateo; Columbus11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro1
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
18.1.2016 Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation https://journal.yuzhnoye.com/content_2016_1/annot_18_1_2016-en/ Tue, 23 May 2023 13:14:12 +0000 https://journal.yuzhnoye.com/?page_id=27637
Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation Authors: Ushkin M. Content 2016 (1) Downloads: 19 Abstract views: 94 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Baltimore; Columbus; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; Boardman; Ashburn; Boardman 11 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Ukraine Dnipro; Dnipro 2 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Ushkin M. Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation Автори: Ushkin M. Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation Автори: Ushkin M. Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation Автори: Ushkin M. Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation Автори: Ushkin M.
]]>

18. Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (1); 110-116

Language: Russian

Annotation: Based on generalization and analysis of Yuzhnoye SDO’s extensive experience of developing the SRM of various types, the dependences of their service life on main operative factors are determined. The techniques of engineering evaluation of operability margin of newly developed SRM are considered based on the methods of taking into account the breaking stresses and accumulation of damages (breaking deformations). An algorithm of engineering evaluation of SRM service life is proposed and the recommendations were elaborated to ensure long operation of the motors.

Key words:

Bibliography:
Downloads: 19
Abstract views: 
94
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Columbus; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; Boardman; Ashburn; Boardman11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Dnipro2
18.1.2016 Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation
18.1.2016 Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation
18.1.2016 Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation
]]>
11.1.2016 Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation https://journal.yuzhnoye.com/content_2016_1/annot_11_1_2016-en/ Tue, 23 May 2023 13:06:36 +0000 https://journal.yuzhnoye.com/?page_id=27621
Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Authors: Ushkin M. Content 2016 (1) Downloads: 17 Abstract views: 110 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Baltimore; Columbus; Monroe; Ashburn; Ashburn; Seattle; Portland; San Mateo; Ashburn; Boardman 11 Singapore Singapore; Singapore; Singapore; Singapore 4 Ukraine Dnipro; Dnipro 2 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Ushkin M. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Автори: Ushkin M. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Автори: Ushkin M. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Автори: Ushkin M. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Автори: Ushkin M.
]]>

11. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (1); 68-75

Language: Russian

Annotation: The factors are considered that have an impact on the value and behavior of SRM flow rate and thrust characteristics after stage separation (in the leg of deep decay). It is shown that thrust behavior in the leg of deep decay is determined by two main processes: afterburning of solid propellant charge residues within the first 3-5 s and mass input of internal thermal protection coating destruction products within the following several tenths of second. The dependences are proposed for design evaluation of SRM intra-ballistic and flow rate/thrust characteristics.

Key words:

Bibliography:
Downloads: 17
Abstract views: 
110
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Columbus; Monroe; Ashburn; Ashburn; Seattle; Portland; San Mateo; Ashburn; Boardman11
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
11.1.2016 Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation
11.1.2016 Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation
11.1.2016 Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation
]]>