Search Results for “Yenotov V. H.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 06 Nov 2024 11:42:12 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Yenotov V. H.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 10.1.2020 Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM https://journal.yuzhnoye.com/content_2020_1-en/annot_10_1_2020-en/ https://journal.yuzhnoye.com/?page_id=31037
Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM Authors: Yenotov V. Content 2020 (1) Downloads: 42 Abstract views: 1415 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Matawan; Baltimore; Plano; Dublin; Ashburn; Los Angeles; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Columbus; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman 27 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Unknown Melbourne; 2 Finland Helsinki 1 Bulgaria Sofia 1 Canada Monreale 1 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Yenotov V.
]]>

10. Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 99-106

DOI: https://doi.org/10.33136/stma2020.01.099

Language: Russian

Annotation: The main solid rocket motors of surface-to-air missiles and some short-range missiles have, as a rule, two operation modes – starting (augmented rating) and cruise (with decreased propellant consumption level). The methods to calculate intraballistic characteristics of such motors have a number of peculiarities, which set them apart from the methods of determining the characteristics of motors with constant propellant consumption level. The purpose of this article is to analyze such peculiarities, design methods, to find interrelation between the parameters of propellant consumption diagram, to determine the impact on the latter of motor design features and propellant characteristics. To achieve this goal, the method of analytical dependencies was developed. The equations obtained show that the required parameters of diagrams (including consumption-thrust characteristics difference between the starting and cruise modes) can be ensured due to varying either case diameter or propellant combustion rate or due to combined variation of these values. In practice, the cases are possible when for some reasons it does not seem possible to vary the case diameter or propellant combustion rate and the requirements to consumption diagram cannot be satisfied to the full extent. The task of motor developer in that case consists in determination of acceptable (alternative) propellant consumption diagrams that would be closest to required. The proposed method is based on calculation and construction of nomograms of dependencies of relative propellant consumption in cruse mode on relative time of starting leg at different propellant combustion rates and constant (required) case diameter and vice versa, at different values of case diameter and constant (available) propellant combustion rate. Using these nomograms, the rocket developer can determine the propellant consumption diagram acceptable for the rocket. In a number of cases, design limitations for separate main motor assemblies are imposed on consumption characteristic diagram that have an impact on its required parameters. The presented materials allow evaluating that impact and contain the proposals to remove it. The presented method allows quickly determining the conditions needed to fulfill required propellant combustion products consumption diagrams and in case of nonfulfillment of these conditions – allow presenting alternative options for selection of most acceptable one.

Key words: solid propellant charge mass, propellant combustion rate, combustion chamber pressure, operation time in starting and cruise modes, combustion chamber pressure difference

Bibliography:
1. K vyboru velichiny davliniia v kamere sgoraniia marshevykh RDTT: tekhn. otchet / GP “KB “Yuzhnoye”. Dnipro, 2017. 19 s.
2. Enotov V. G., Kushnir B. I., Pustovgarova Е. V. Avtomatizirovannaia proektnaia otsenka kharakteristik marshevykh dvigatelei na tverdom toplive s korpusom iz vysokoprochnykh metallicheskikh materialov takticheskikh i operativno-takticheskikh raket: ucheb.-metod. posobie / pod red. А. S. Kirichenko. Dnepropetrovsk, 2014. 72 s.
3. Sorkin R. Е. Gasotermodinamika raketnykh dvigatelei na tverdom toplive. М, 1967. 368 s.
Downloads: 42
Abstract views: 
1415
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Dublin; Ashburn; Los Angeles; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Columbus; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Melbourne;2
Finland Helsinki1
Bulgaria Sofia1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
10.1.2020  Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM
10.1.2020  Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM
10.1.2020  Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM

Keywords cloud

]]>
8.1.2018 The Solid–Propellant Motors with Regulated Thrust https://journal.yuzhnoye.com/content_2018_1-en/annot_8_1_2018-en/ Tue, 05 Sep 2023 06:26:08 +0000 https://journal.yuzhnoye.com/?page_id=30458
The Solid–Propellant Motors with Regulated Thrust Authors: Glazkov V. , Yenotov V. The possibility in principle is shown of creating such motors and stabilizing their characteristics in different operation modes due to the throat area regulation system and selection of relevant control algorithm. O., Yenotov V. Available at: https://doi.org/10.33136/stma2018.01.046 . O., Yenotov V. The Solid–Propellant Motors with Regulated Thrust Автори: Glazkov V. O., Yenotov V. The Solid–Propellant Motors with Regulated Thrust Автори: Glazkov V. O., Yenotov V. O., Yenotov V. O., Yenotov V. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX на сайт ДП «КБ «Південне»
]]>

8. The Solid–Propellant Motors with Regulated Thrust

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 46-52

DOI: https://doi.org/10.33136/stma2018.01.046

Language: Russian

Annotation: The paper considers the results of scientific research and experimental works performed by Yuzhnoye SDO on solid–propellant motors with controlled thrust. The possibility in principle is shown of creating such motors and stabilizing their characteristics in different operation modes due to the throat area regulation system and selection of relevant control algorithm.

Key words:

Bibliography:
1. Petrenko V. I., Sokoovsky M. I. et al. Control of Solid-Propellant Propulsion Systems. М., 2003. 463 p.
2. Presnyakov V. F. Solid Rocket Motor Dynamics. М., 1984. 248 p.
3. Sorokin R. E. Solid Rocket Motor Gas Thermodynamics. М., 1967. 368 p.
Downloads: 41
Abstract views: 
920
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan;; Plano; Miami; Columbus; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Tappahannock; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Seattle22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Pavlohrad; Kyiv; Kyiv; Dnipro4
Unknown; Hong Kong2
Germany; Falkenstein2
Vietnam Qui Nhon1
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
8.1.2018 The Solid–Propellant Motors with Regulated Thrust
8.1.2018 The Solid–Propellant Motors with Regulated Thrust
8.1.2018 The Solid–Propellant Motors with Regulated Thrust
]]>
1.1.2016 Solid Rocket Motors Developed by DO-5 https://journal.yuzhnoye.com/content_2016_1/annot_1_1_2016-en/ Thu, 22 Jun 2023 11:52:04 +0000 https://journal.yuzhnoye.com/?page_id=27589
Solid Rocket Motors Developed by DO-5 Authors: Kirichenko A. , Yenotov V. Language: Russian Annotation: The main phases of formation and development of solid motor engineering are presented. I., Yenotov V. I., Yenotov V. Solid Rocket Motors Developed by DO-5 Автори: Kirichenko A. I., Yenotov V. Solid Rocket Motors Developed by DO-5 Автори: Kirichenko A. I., Yenotov V. Solid Rocket Motors Developed by DO-5 Автори: Kirichenko A. I., Yenotov V. Solid Rocket Motors Developed by DO-5 Автори: Kirichenko A. I., Yenotov V. More Citation Formats Harvard Chicago IEEE AIP ДСТУ 8302:2015 ДСТУ ГОСТ 7.1:2006 (ВАК) ISO 690:2010 BibTeX на сайт ДП «КБ «Південне»
]]>

1. Solid Rocket Motors Developed by DO-5

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (1); 4-12.

Language: Russian

Annotation: The main phases of formation and development of solid motor engineering are presented. The basic technical problems are considered, solution of which allowed building the main motors and dispensing motors with high performance level and highly-effective rocket systems on their basis

Key words:

Bibliography:
Downloads: 60
Abstract views: 
276
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Dublin; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Boardman; Seattle; Seattle; Tappahannock; Ashburn; Portland;;; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman29
Ukraine Kyiv; Kyiv; Boryspil; Kyiv; Kharkiv; Kyiv; Kyiv; Dnipro; Pavlohrad; Kyiv; Kyiv; Kharkiv; Dnipro13
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Monreale2
Sweden Linköping; Linköping2
Germany Falkenstein; Hamburg2
Finland Helsinki1
France Paris1
Mongolia1
Romania Voluntari1
Netherlands Amsterdam1
Bulgaria Plovdiv1
1.1.2016 Solid Rocket Motors Developed by DO-5
1.1.2016 Solid Rocket Motors Developed by DO-5
1.1.2016 Solid Rocket Motors Developed by DO-5
]]>
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software https://journal.yuzhnoye.com/content_2023_1-en/annot_9_1_2023-en/ Fri, 12 May 2023 16:11:14 +0000 https://test8.yuzhnoye.com/?page_id=26993
Mathematical support and software Authors: Yenotov V. Content 2023 (1) Downloads: 9 Abstract views: 1356 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Ashburn; Columbus; San Mateo 3 China Pekin 1 Unknown 1 Canada Toronto 1 Singapore Singapore 1 Germany Falkenstein 1 Ukraine Kremenchuk 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Yenotov V. Mathematical support and software Автори: Yenotov V. Mathematical support and software Автори: Yenotov V. Mathematical support and software Автори: Yenotov V. Mathematical support and software Автори: Yenotov V.
]]>

9. Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 77-87

DOI: https://doi.org/10.33136/stma2023.01.077

Language: Ukrainian

Annotation: Substantiation of the research tools has been performed as a part of methodology development for the air and missile defense system. The problem under consideration is very complex due to the multifactorial nature of the research object, its qualitative variety and manifold structure, incomplete definition of the problem statement. Furthermore, the ability of modern technologies to produce different arms systems, which are capable of carrying out same class tasks, considerably increases the risk of making not the best decisions. Based on this, as well as taking into account the sharp increase in the cost of weaponry, the considered problem is classified as an optimization one that should be solved through the theory of operations research. In this theory, such task is viewed as a mathematical problem, and mathematical simulation is the basic method of research. The main types of mathematical models, their areas of application have been considered as a part of the analysis. The classification of mathematical models has been indicated according to the scale of reproduced operations, purpose, and goal orientation. Quantitative and qualitative correlation of forces has been accepted as the efficiency criterion, which determines a goal orientation of the model. The problems related to this have been shown. In particular, searching for the compromise between simplicity of the mathematical model and its adequacy to the research object is among these problems. Two of the basic approaches to principles of the military operation model construction and its assessment have been considered. The first is implemented through modeling of the combat operations. The second approach is based on the assumption that different armament types can be compared based on their contribution to the outcome of the operation, and on the possibility to assign «a weighting coefficient» named as a combat potential to each of these types. The modern level of problem solving related to this method has been shown. The reasonability of its application in the considered task, including the definition of forces correlation of the opposing parties, has been substantiated. The basic regulations of the construction concept of the required mathematical model and tools for its research have been formulated based on the analysis results: the assigned problem should be solved by analytical methods through the theory of operations research; the analytical model is the most acceptable conception of the analyzed level of the military operation; the synthesis of the model should be based on the idea of a combat potential. At the same time, it should be taken into account that the known approach to the definition of forces correlation, which uses the combat potential method, has a number of essential limitations, including the methodological ones. Therefore, within the bounds of further research, this approach requires the development both in terms of improving the reliability of the single assessment and in terms of giving the system qualities to the synthesized mathematical model.

Key words: multifunctional system, mathematical model, military unit, combat potential, correlation of forces, defensive sufficiency

Bibliography:

1. Pavlyuk Yu. S. Ballisticheskoe proektirovanie raket: ucheb.-metod, posobie dlya vuzov. UDK623.451.8. Izd-vo ChGTU, Chelyabinsk, 1996. 92 s.
2. Nikolaev Yu. M., Solomonov Yu. S. Inzhenernoe proektirovanie upravlyaemykh ballisticheskikh raket s RDTT. M., 1979. 240 s.
3. Enotov V. G., Kirichenko A. S., Pustovgarova Ye. V. Osobennosti rascheta i vybora raskhodnoy diagrammy dvukhrezhimnykh marshevykh RDTT: ucheb.-metod. posobie. Pod red. akadem. A. V. Degtyreva. Dnepr, 2019. 68 s.
4. Enotov V. G., Kushnir B. I., Pustovgarova Ye. V. Metodika-programma proektnoy otsenki characteristic marshevykh dvigateley na tverdom toplive s korpusami iz vysokoprochnykh metallicheskikh materialov, statsionarnymi soplami i postanovka ee na avtomatizirovanniy raschet: ucheb.-metod. posobie. Vtoroe izd., pererabot. i dop. Pod red. A. S. Kirichenko. Dnep, 2019. 91 s.
5. Enotov V. G., Kirichenko A. S., Kushnir B. I., Pustovgarova Ye. V. Metodika proektnoy otsenki characteristic marshevykh dvigatelnykh ustanovok na tverdom toplive s povorotnymi upravlyayuschimi soplami, plastikovymi tselnomotannymi korpusamy i postanovka ee na avtomatizirovanniy raschet: ucheb.-metod. posobie. Vtoroe izd., pererabot. i dop. Pod red. akadem. A. V. Degtyareva. Dnepr. 2019. 149 s.
6. Alemasov V. Ye., Dregalin A. F., Tishin A. P. Teoriya raketnykh dvigateley. M., 1980. 55 s.
7. Raschetnye materialy dlya podgotovki i vydachi iskhodnykh dannykh na razrabotku uzlov marshevykh dvigatelnykh ustanovok na tverdom toplive. Raschet ID metodom avtomatizirovannogo proektirovaniya operativno-takticheskikh raket: inzhenern. zapiska 553-376 IZ. GP «KB «Yuzhnoye». Dnepropetrovsk, 2017. 30 s.
8. Metodika avtomatizirovannogo proektirovaniya operativno-takticheskikh raket: nauch.-tekhn. Otchet 03-453/32 NTO. GP «KB «Yuzhnoye». Dnepropetrovsk, 2010. 127 s.

Downloads: 9
Abstract views: 
1356
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Columbus; San Mateo3
China Pekin1
Unknown1
Canada Toronto1
Singapore Singapore1
Germany Falkenstein1
Ukraine Kremenchuk1
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software

Keywords cloud

]]>