Search Results for “angle of attack program” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:32:58 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “angle of attack program” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 1.2.2019 Optimization of the trajectory of the antiaircraft guided missile https://journal.yuzhnoye.com/content_2019_2-en/annot_1_2_2019-en/ Sat, 16 Sep 2023 21:19:15 +0000 https://journal.yuzhnoye.com/?page_id=28723
The control program selected the angle of attack  program. Key words: anti-aircraft missile , optimization , angle of attack program , trajectory Bibliography: 1. anti-aircraft missile , optimization , angle of attack program , trajectory .
]]>

1. Optimization of the trajectory of the antiaircraft guided missile

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 3-10

DOI: https://doi.org/10.33136/stma2019.02.003

Language: Russian

Annotation: The article is devoted to optimization of a trajectory of the antiaircraft guided missile performed in design phase. The review of existing solutions on this issue confirmed the topicality of the problem. The analytical solution cannot be obtained, therefore, according to modern tendencies, optimization by numerical method of original development was performed. The basis of the method is two-level optimization which is carried out, in turn, by two different numerical methods and for two different criteria functions. At the top level, by method of random search and as a variant, by method of coordinate descent, the search was carried out for a fixed set of intermediate for the specified flight range trajectory points which co-ordinates in aggregate provide the necessary optimum. At the bottom level, for each pair of consecutive intermediate points, the boundary problem of falling into distant point by one-dimensional optimization was solved. The coordinate descent method was used for search for the simplified flight program. As optimization criteria for top level, minimum flight time or maximum final speed, for bottom  terminal criterion were used. The control program selected the angle of attack  program. As a result, the optimum and suboptimum (additionally ensuring minimum calculation time) trajectories and flight programs to maximum range and different altitudes were obtained. The analysis of results showed practical proximity of trajectories of minimum flight time and maximum final speed.

Key words: anti-aircraft missile, optimization, angle of attack program, trajectory

Bibliography:
1. Letov A. M. Dynamika poleta i upravlenie. M., 1969. 360 s.
2. Ushan’ V. N. Metod synteza optymalnykh traektoriy dlya vyvoda dynamicheskykh obiektov v zadannuyu tochku. Systemy obrobky informatsii. 2014. № 1 (117). S. 67-71.
3. Zarubinskaya A. L. Optimalnoe upravlenie dvizheniem letatelnykh apparatov v atmosfere ot starta do tochek vstrechi. Technicheskaya mekhanika. 1997. № 5. S. 23-28.
4. Grabchak V. I. Osnovni aspekty opysu zadachi pro optimalnu shvidkodiu keruvanny rukhom rakety. Systemy ozbroyennya i viyskova tekhnika. 2014. № 4(40). S. 13-20.
5. Shaw Y. Ong. Optimal Planar Evasive Aircraft Maneuvers Against Proportional Navigation Missiles. Journal of guidance, control and dynamics. 1996. Vol. 19, № 6. Р. 1210-1215. https://doi.org/10.2514/3.21773
6. Renjith R. Kumar. Near-Optimal Three-Dimensional Air-to-Air Missile Guidance Against Maneuvering Target. Journal of guidance, control and dynamics. 1995. Vol. 18, № 3. Р. 457-464. https://doi.org/10.2514/3.21409
7. Paul J. Enright. Conway Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming. Journal of guidance, control, and dynamics. 1992. Vol. 15, № 4. Р. 994-1002. https://doi.org/10.2514/3.20934
8. Craig A. Phillips. Trajectory Optimization for a Missile Using a Multitier Approach. Journal of Spacecraft and Rockets. 2000. Vol. 37, № 5. Р. 653-662. https://doi.org/10.2514/2.3614
9. Lebedev A. A., Gerasyuta N. F. Ballistila raket. M., 1970. 244 s.
10. Proektirovanie zenitnykh upravlyaemykh raket / I. I. Arkhangelskiy i dr.; pod red. I. S. Golubeva i V. G. Svetlova. M., 2001. 732 s.
11. Drakin I. I. Osnovy proektirovania letatelnykh apparatov s uchetom ekonomicheskoy effektivnosti. M., 1973. 224 s.
12. Beiko I. V., Bublik B. N., Zinko P. N. Metody i algoritmy resheniya zadach optimizatsii. K., 1983. 512 s.
13. Krinetskiy Ye. I. Systemy samonavedeniya. M., 1970. 236 s.
Downloads: 51
Abstract views: 
1964
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore;; Boydton; Plano; Dublin; Ashburn; Columbus; Los Angeles; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Boardman; Seattle; Seattle; Portland; San Mateo; San Mateo; Columbus; Des Moines; Des Moines; Boardman; Boardman; Ashburn32
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Ukraine Odessa; Dnipro2
Finland Helsinki1
Unknown Hong Kong1
Canada Monreale1
Türkiye Istanbul1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
17.2.2018 Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine https://journal.yuzhnoye.com/content_2018_2-en/annot_17_2_2018-en/ Thu, 07 Sep 2023 12:17:39 +0000 https://journal.yuzhnoye.com/?page_id=30796
The last two cases used the same program for the angle of attack. Thereby the program for the angle of attack was developed in a way that allowed kinematic characteristics on touchdown be as close as possible to the corresponding values, shown by civil and/or military-transport heavy aircraft.
]]>

17. Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 143-150

DOI: https://doi.org/10.33136/stma2018.02.143

Language: Russian

Annotation: Basic dynamic properties of the reentry part of the aircraft-type first stage were examined when turbojet engine is used in the recovery phase. Such configuration can be of interest because turbojets have considerably smaller rate of flow in comparison to rocket engines. Moreover, they are launched in the lower stratosphere or in the troposphere so that there is no need to place oxidizer supply on board. This recovery plan differs from an alternative rocket recovery system and, from our point of view, provides more efficient usage of the fuel stores because it doesn’t require the main propulsion to be started in the recovery phase. Besides the analysis of qualitative characteristics of the descend phase for this stage, the efficiency of a wing with moderate values of maximum aerodynamic characteristics and a turbojet was studied. In this case three ways for stage recovery were investigated. The first one implied unguided descend with zero angle of attack assuming that the stage is statically stable. This descend trajectory was considered as standard and was used to evaluate the efficiency of the wing and turbojet with relatively small propulsion. The second and the third design cases offered the gliding guided descend with turbojet being started only in the lower stratosphere. The last two cases used the same program for the angle of attack. The possibility to ensure permissible overload values at the critical points of the descend trajectory and acceptable values of kinematic characteristics at the earth surface tangency point are also of great interest. Thereby the program for the angle of attack was developed in a way that allowed kinematic characteristics on touchdown be as close as possible to the corresponding values, shown by civil and/or military-transport heavy aircraft. Simulation was conducted on Microsoft Visual Studio 2010.

Key words: guided descent, turbojet, kinematic characteristics, tangency point, civil aviation

Bibliography:
1. Kuznetsov Y. L., Ukraintsev D. S. Analysis of Impact of Flight Scheme of Stage with Rocket-Dynamic Recovery System on Payload Capability of Medium-Class Two-Stage Launch Vehicle. New of S. P. Korolev Samara State Aerospace University (National Research University). 2016. Vol. 15, No. 1. P. 73-80. https://doi.org/10.18287/2412-7329-2016-15-1-73-80
2. Andreyevsky V. V. Spacecraft Earth Descent Dynamics М., 1970. 230 p.
Downloads: 46
Abstract views: 
706
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Matawan; Baltimore; Cheyenne; Plano; Dublin; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Antioch; Tappahannock; Portland; San Mateo; Ashburn; Des Moines; Boardman; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Unknown Brisbane;2
Great Britain London;2
Germany Frankfurt am Main; Falkenstein2
Canada Toronto; Monreale2
India Kolkata1
Belgium Brussels1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
17.2.2018 Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine
17.2.2018 Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine
17.2.2018 Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>