Search Results for “calculation of acoustic loads” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:35:29 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “calculation of acoustic loads” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source https://journal.yuzhnoye.com/content_2019_1-en/annot_9_1_2019-en/ Thu, 25 May 2023 12:09:50 +0000 https://journal.yuzhnoye.com/?page_id=27714
To take into account the effects on these elements, it is necessary to determine the characteristics of generated acoustic field. The method was developed that allows modeling the acoustic fields during integrated launch vehicle lift-off based on determination of acoustic sources type. In particular, modeling of Cyclone-4M ILV jet acoustic radiation by bulky source was performed. The algorithm and program of calculation of sound pressure levels were developed in JAVA language. The characteristics of acoustic fields sound pressure levels were calculated depending on radiation frequency taking into account environmental temperature. ...Singapore 6 Finland Helsinki 1 Indonesia Surabaya 1 Canada Monreale 1 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Unknown 1 Ukraine Dnipro 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Sirenko V.
]]>

9. Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 64-71

DOI: https://doi.org/10.33136/stma2019.01.064

Language: Russian

Annotation: During lift-off of integrated launch vehicles, the propulsion system jet generates acoustic field. Therewith, the loads can be created that are critical for the launching equipment, rocket body and especially for the spacecraft, which are under the fairing. To take into account the effects on these elements, it is necessary to determine the characteristics of generated acoustic field. The method was developed that allows modeling the acoustic fields during integrated launch vehicle lift-off based on determination of acoustic sources type. In particular, modeling of Cyclone-4M ILV jet acoustic radiation by bulky source was performed. This provided the possibility to calculate acoustic pressure amplitudes in ILV ambient medium and to evaluate acoustic effect on the rocket body at certain points. The method is expected to be used to investigate kR wave parameter. The modeling of integrated launch vehicle propulsion system (ILV PS) jet acoustic field as bulky radiation source was performed in the rocket flight leg where ILV ascent altitude does not exceed ~ 25 m. In this case, one should be based on the value of boundary frequency fb =150 Hz which separates two types of acoustic field: fb ˂ 150 Hz – front of acoustic wave of spherical type, fb > 150 Hz – front of acoustic wave of flat type. The algorithm and program of calculation of sound pressure levels were developed in JAVA language. The characteristics of acoustic fields sound pressure levels were calculated depending on radiation frequency taking into account environmental temperature. The maximal acoustic pressure level in 150 Hz frequency in the payload area outside the fairing – 155 dB, in the instrumentation bay area – 157 dB, in the intertank bay area – 172 dB, in the aft bay area – 182 dB. In the frequencies lower than 150 Hz, the sound pressure levels are lower. The calculation data are presented graphically.

Key words: integrated launch vehicle, acoustic field, sound pressure

Bibliography:

1. Dementiev V. K. O maximalnykh akusticheskykh nagruzkakh na rekety pri starte/ V. K. Dementiev, G. Ye. Dumnov, V. V. Komarov, D.A. Melnikov// Kosmonavtika I raketostroenie. 2000. Vyp. 19. P. 44-55.
2. Tsutsumi S., Ishii T., Ut K., Tokudone S., Chuuouku Y., Wado K. Acoustic Design of Launch Pad for Epsilon Launch Vehicle / Proceedings of AJCPP2014 . Asian Joint Conference on Propulsion and Power, March 5- 8, 2014, Jeju Island, Korea. AJCPP2014-090.
3. Panda J., Mosher R., Porter D.J. Identification of Noise Sources during Rocket Engine Test Firings and a Rocket Launch a Microphone Phased-Array // NASA / TM2013-216625, December 2013. P. 1-20.
4. Sokol G. I. Metod opredeleniya vida istochnikov akusticheskogo izlucheniya v pervye secundy starta raket kosmicheskogo naznacheniya/ G. I. Sokol// Systemne proektuvannya ta analiz characteristic aerokosmichoi techniki: Zb. nauk. pr. 2018. XXIV. Dnipro: Lira, 2018. P. 91-101.
5. Sokol G. I., Frolov V. P., Kotlov V. Yu. / Volnovoy parameter kak kriteriy v osnove metoda issledovaniya akusticheskikh istochnikov pro starte raket/ Aviatsionno-kosmicheskaya technika I technologia. 2018. 3 (147), May-June 2018. Kharkov: KhAI, 2018. P. 4-13. DОІ:http://doi.org /10.20535/0203- 3771332017119600.
6. Rzhevkin S. N. Kurs lektsiy po teorii zvuka/ S. N. Rzhevkin. M.: MGU, 1960. 261 p.
7. Tyulon V. N. Vvedenie v teoriyu izlucheniya I rasseyaniya zvuka / V. N. Tyulin. M.: Nauka, 1976. 253 p.
8. Sapozhkov M. A. Electroakustica/ M. A. Sapozhkov. M.: Svyaz, 1978. 272 p.
9. Grinchenko V. T., Vovk V. V., Matsipura V. T.. Osnovy akustiki. Kyiv: Nauk. dumka, 2007. 640 p.
10. Ultrazvuk: Malaya enciclopedia. M.: Nauka, 1983. 400 p.
11. Volkov K. N. Turbulentnye strui – staticheskie modeli i modelirovanie krupnykh vikhrey/ K. N. Volkov, V. N. Emelyanov, V. A. Zazimko. M.: Fizmatlit, 2013. 960 p.
12. Schildt G. Java 8. Polnoe rukovodstvo. 9-e izd. M.: Wiliams, 2015. 137 p.

Downloads: 44
Abstract views: 
907
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Springfield; Matawan; Baltimore; Plano; Miami; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Boydton; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn30
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Finland Helsinki1
Indonesia Surabaya1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Unknown1
Ukraine Dnipro1
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime https://journal.yuzhnoye.com/content_2019_1-en/annot_5_1_2019-en/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27710
Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems. Key words: classification of loads and failures; shock wave , acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur Bibliography: 1. classification of loads and failures; shock wave , acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur .
]]>

5. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Language: Russian

Annotation: This article contains results of methodology and standards development for life prediction of launch site structures to launch various types’ launch vehicles into near-earth orbit. Launch sites have been built in various countries of the world (European Union, India, China, Korea, Russia, USA, Ukraine, France, Japan, etc.). In different countries they have their own characteristics, depending on the type and performance of the launch vehicles, infrastructure features (geography of the site, nomenclature of the space objects, development level of rocket and space technology), problems that are solved during launches, etc. Solution of various issues, arising in the process of development of the standards for justification of launch site life is associated with the requirement to consider complex problems of strength and life of nonuniform structural elements of launch sites and structures of rocket and space technology. Launch sites are the combination of technologically and functionally interconnected mobile and fixed hardware, controls and facilities, designed to support and carry out all types of operations with integrated launch vehicles. Launch pad, consisting of the support frame, flue duct lining and embedded elements for frame mounting, is one of the principal components of the launcher and to a large extent defines the life of the launch site. Main achievements of Ukrainian scientists in the field of strength and life are specified, taking into account the specifics of various branches of technology. It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Main methodological steps of launch site structures life prediction are defined. Service limit of launch site is suggested to be the critical time or the number of cycles (launches) over this period, after which the specified limiting states are achieved in the dangerous areas of the load-bearing elements: critical cracks, destruction, formation of unacceptable plastic deformations, buckling failure, corrosion propagation, etc. Classification of loads acting on the launch sites is given. The useful life of launch site is associated with estimation of the number of launches. Concept of low and multiple-cycle fatigue is used. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.

Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur

Bibliography:

1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.

Downloads: 48
Abstract views: 
821
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Springfield; Matawan; North Bergen; Plano; Miami; Miami; Miami; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Canada Toronto; Toronto; Monreale3
Unknown Hong Kong;2
Finland Helsinki1
India1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Keywords cloud

]]>
12.2.2019 Procedure of acoustic loads measuring during the ILV launch https://journal.yuzhnoye.com/content_2019_2-en/annot_12_2_2019-en/ Mon, 15 May 2023 15:46:04 +0000 https://journal.yuzhnoye.com/?page_id=27214
Proposed is the procedure of acoustic loads measurement and calculation of the minimal acoustic noise-safe launching rocket distance, at which it is safe to put equipment and operating personnel. This procedure is based on sharing of the numerical simulation of the exhaust jet in the ANSYS software system, engineering approaches in calculation of propagation and extinction of acoustic waves and measurement of the actual values of acoustic loads with the use of several noise meters. As an outcome of calculations and measurements, done by the proposed procedure, outlines of the noise-safe zone were successfully defined and number of modifications suggested for the sound attenuating chamber to reduce the acoustic loads it generates. Key words: Supersonic jet , calculation of acoustic loads , acoustic measurements , acoustic protection Bibliography: 1. Supersonic jet , calculation of acoustic loads , acoustic measurements , acoustic protection .
]]>

12. Procedure of acoustic loads measuring during the ILV launch

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 92-95

DOI: https://doi.org/10.33136/stma2019.02.092

Language: Russian

Annotation: The paper considers the main aspects of acoustic loads measuring during the rocket launch as well as problem of staff, equipment and environment protection from destructive effect of noise, generated by rocket’s engine. Proposed is the procedure of acoustic loads measurement and calculation of the minimal acoustic noise-safe launching rocket distance, at which it is safe to put equipment and operating personnel. This procedure is based on sharing of the numerical simulation of the exhaust jet in the ANSYS software system, engineering approaches in calculation of propagation and extinction of acoustic waves and measurement of the actual values of acoustic loads with the use of several noise meters. Effective sanitary standards of noise safety were taken to define the duration and power of acoustic loads safe for the personnel. As an example of use of this procedure, results of calculation of noise levels, provided by the sound attenuating chamber, and measurement data during the pulsed wind tunnel tests have been presented. As an outcome of calculations and measurements, done by the proposed procedure, outlines of the noise-safe zone were successfully defined and number of modifications suggested for the sound attenuating chamber to reduce the acoustic loads it generates.

Key words: Supersonic jet, calculation of acoustic loads, acoustic measurements, acoustic protection

Bibliography:
1. Opredelenie summarnogo urovnya shuma neskolkykh istochnikov. URL: http//studbooks.net/39077/bzhd/ opredelit_summarnyy_uroven_neskolkih_ istochnikov_shuma (data obrascheniya: 06.08.2017).
2. DSN 3.3.6.037-99. Sanitarni normy vyrobnychogo shumu, ultrazvuku ta infrazvuku.
3. Khekl M., Muller Kh. A. Spravochnik po tekhnicheskoy akustike. 1980. 438 s.
Downloads: 40
Abstract views: 
553
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; Plano; Dublin; Ashburn; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Cambodia Phnom Penh; Phnom Penh; Phnom Penh3
Finland Helsinki1
Unknown1
Great Britain London1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
12.2.2019 Procedure of acoustic loads measuring during the ILV launch
12.2.2019 Procedure of acoustic loads measuring during the ILV launch
12.2.2019 Procedure of acoustic loads measuring during the ILV launch

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
8.2.2019 Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head https://journal.yuzhnoye.com/content_2019_2-en/annot_8_2_2019-en/ Mon, 15 May 2023 15:45:50 +0000 https://journal.yuzhnoye.com/?page_id=27210
Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head Authors: Batutina T. Attempts of development of similar calculation models go back to the early efforts, dedicated to the study of the aeroacoustics of the launch vehicle in flight. (2019) "Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head" Космическая техника. "Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head" Космическая техника. quot;Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head", Космическая техника. Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head Автори: Batutina T.
]]>

8. Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Institute of Hydromechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (2); 58-62

DOI: https://doi.org/10.33136/stma2019.02.058

Language: Russian

Annotation: The article considers the procedure for evaluation of acoustic stressing parameters at the observation point nearby the launch vehicle nose cone when passing the sectors with maximum velocity heads and close to 1 Mach numbers. And the problem is set to determine the overall sound pressure level and the corresponding levels in octave and 1/3-octave frequency bands. Procedure under consideration is based on the semi-empirical dependency of characteristics of the wideband aerodynamic noise, which occurs during the launch vehicle flight at high velocities due to the turbulent pressure fluctuations and dimensionless aerodynamic parameters of the main stream. General idea of this approach is to establish relation of the velocity heads with wall pressure fluctuations in the boundary layer, calculating shear stress (friction) on the shell surface based on relationships applicable in the boundary layer theory and engineering experience. Attempts of development of similar calculation models go back to the early efforts, dedicated to the study of the aeroacoustics of the launch vehicle in flight. Main advantages of the procedure are its simplicity and versatility since it can be used to determine the acoustic loads around the payload fairings of launch vehicles of different sizes and shapes within the wide range of flight velocities and altitudes.

Key words: Launch vehicle flight, Mach number, launch vehicle payload fairing, determination of sound pressure

Bibliography:
1. Raman K. R. A study of surface pressure fluctuations in hypersonic turbulent boundary layers. NASA CR-2386, 1974. 90 p. https://doi.org/10.2514/6.1973-997
2. Aviatsionnaya akustika/ pod red. A. G. Munina. М., 1986. Ch. 1. 248 s.
3. Aviatsionnaya akustika / pod red. A. G. Munina. М., 1986. Ch. 2. 264 s.
4. Kovalnogov N. N., Lukin N. M. Osnovy teorii i rascheta pogranichnogo sloya. Ulianovsk, 2000. 86 s.
5. Monin A. S., Yaglom A. M. Statisticheskaya hydromechanika. Mechanika turbulentnosti. M., 1965. Ch. 1. 640 s.
6. Vasiliev V. V., Morozov L. V., Shakhov V. G. Raschet aerodynamicheskykh characteristic letatelnykh apparatov. Samara, 1993. 78 s.
7. Yefimtsov B. M. Kriterii podobiya spektrov pristenochnykh pulsatsiy davleniy turbulentnogo pogranichnogo sloya. Acousticheskiy journal. 1984. T. 30, № 1. S. 58–61.
Downloads: 39
Abstract views: 
326
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; Des Moines; Des Moines; Boardman; Boardman; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
Germany Limburg an der Lahn; Falkenstein2
Finland Helsinki1
Unknown Hong Kong1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
8.2.2019 Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head
8.2.2019 Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head
8.2.2019 Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head

Keywords cloud

]]>