Search Results for “charge” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Mon, 17 Jun 2024 12:32:44 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “charge” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge https://journal.yuzhnoye.com/content_2024_1-en/annot_12_1_2024-en/ Mon, 17 Jun 2024 11:36:02 +0000 https://journal.yuzhnoye.com/?page_id=35070
Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge Authors: Nadtoka V. 2024, (1); 102-113 Language: Ukrainian Annotation: Steel hardening technology is considered, which implies modification of the steel surface with the method of ion-plasma nitriding in glow discharge. Key words: ion nitriding , glow discharge , cross-sectional layer structure , hardening , microhardness Bibliography: 1. Nitrogen potential during ion nitriding process in glow-discharge plasma. (2024) "Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge" Космическая техника. "Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge" Космическая техника. , "Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge", Космическая техника. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge Автори: Nadtoka V.
]]>

12. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Ukrainian State University of Science and Technologies2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 102-113

Language: Ukrainian

Annotation: Steel hardening technology is considered, which implies modification of the steel surface with the method of ion-plasma nitriding in glow discharge. Ion-plasma nitriding is a multi-factor process, which requires the study of the influence of nitriding process conditions on the structure of modified layers, which, in its turn, determines their mechanical properties. The subjects of research included: austenitic steel 12X18Н10T, carbon steel Ст3 and structural steel 45. There were two conditions of plasma creation during the research: free location of samples on the surface of the cathode (configuration I) and inside the hollow cathode (configuration II). Optimal parameters of the ion-plasma nitriding process have been determined, which provide stability of the process and create conditions for intensive diffusion of nitrogen into the steel surface. Hydrogen was added to the argon-nitrogen gaseous medium to intensify the nitriding process. Working pressure in the chamber was maintained within the range of 250-300 Pa, the duration of the process was 120 minutes. Comparative characteristics of the structure and microhardness of the modified surfaces of the steels under study for two ion-plasma nitriding technologies are presented. Metallographic examination of the structure of the surface modified layers in the cross section showed the presence of the laminated nitrided layer, which consists of different phases and has different depths, depending on the material of the sample and treatment mode. Nitrided layer of 12Х18Н10Т steel consisted of four sublayers: upper “white” nitride layer, double diffuse layer and lower transition layer. The total depth of the nitrided layer after the specified treatment time reached 23 μm, use of hollow cathode increased it by 26% to 29 μm. The nitrided layers of steel Ст3 and steel 45 consisted of two sublayers – thick “white” nitride layer and general diffuse layer with a thickness of about 18 μm. The microhardness of the nitrided layer of steel Ст3 was 480 HV, increasing by 2,5 times, and for steel 45 was 440 HV, increasing by 1,7 times. The use of hollow cathode for these steels reduces the depth of the nitrided layer, but at the same time the microhardness increases due to the formation of a thicker and denser nitride layer on the surface. The results of the conducted research can be used to strengthen the surfaces of the steel parts in rocket and space technology, applying high-strength coatings.

Key words: ion nitriding, glow discharge, cross-sectional layer structure, hardening, microhardness

Bibliography:

1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49.
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12.
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108.
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52.
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35.
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p.
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283.
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68.
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.

Downloads: 10
Abstract views: 
988
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Phoenix; Ashburn; Des Moines; Boardman5
Ukraine Kyiv; Dnipro2
Finland Helsinki1
Singapore Singapore1
Netherlands Amsterdam1
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS https://journal.yuzhnoye.com/content_2024_1-en/annot_14_1_2024-en/ Mon, 17 Jun 2024 07:52:20 +0000 https://journal.yuzhnoye.com/?page_id=35004
The article presents an experimental study of the performance of a linear shaped charge of a launch vehicle stage separation system. This type of linear shaped charge is one of the most common types of linear shaped charge, which are used in launch vehicle separation systems being developed in Ukraine. One of the main characteristics of the linear shaped charge, which determines the efficiency and reliability of the separation process, is the depth of penetration of the cumulative jet into the obstacle. The work studied the effect of a cumulative jet of a linear shaped charge with a semi-cylindrical cumulative part. An experimental confirmation of the performance of this type of linear shaped charge is presented, using the example of a linear shaped charge with a diameter of 5 mm, acting on an obstacle made of aluminum alloy grade 2219. An improved formula is proposed for the practical calculation of the penetration depth of a cumulative jet for a linear shaped charge with a semi-cylindrical cumulative part, using an additional correction factor.
]]>

14. Experimental studies of the performance of pyrotechnic devices installed on the launch vehicle separation systems

Автори: Bolyubash Ye. S.

Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 121-128

Language: Ukrainian

Annotation: Pyrotechnic devices are important elements in rocket and space technology, which to a large degree determine the flight success of the launch vehicles, since they enable instantaneous operations to separate spent stages, change configurations, ensure safety, etc. Pyrotechnic devices are subject to strict requirements for reliability, safety, security and efficiency. The article presents an experimental study of the performance of a linear shaped charge of a launch vehicle stage separation system. This type of linear shaped charge is one of the most common types of linear shaped charge, which are used in launch vehicle separation systems being developed in Ukraine. One of the main characteristics of the linear shaped charge, which determines the efficiency and reliability of the separation process, is the depth of penetration of the cumulative jet into the obstacle. The work studied the effect of a cumulative jet of a linear shaped charge with a semi-cylindrical cumulative part. An experimental confirmation of the performance of this type of linear shaped charge is presented, using the example of a linear shaped charge with a diameter of 5 mm, acting on an obstacle made of aluminum alloy grade 2219. The research methodology, experimental scenario, in particular, a description of the research object and a scheme for measuring test results are presented. Depth of cumulative jet penetration into the obstacle was measured in 60 points along the cut line of the samples under study. A statistical analysis of the experimental results was carried out, in particular, the average penetration depth was determined. An improved formula is proposed for the practical calculation of the penetration depth of a cumulative jet for a linear shaped charge with a semi-cylindrical cumulative part, using an additional correction factor. It is noted that the depth of penetration of a cumulative jet into an obstacle is significantly influenced by technological aspects. Taking into account this influence, the lower limit of the one-sided tolerance interval was determined. Recommendations are provided to improve future experimental procedures. Based on the obtained results, it was established that the linear shaped charges under study are operational and meet the requirements for linear shaped charges, installed on launch vehicle separation systems.

Key words: cumulative effect, shaped charge, linear shaped charge, separation systems, pyrotechnic separation devices, linear shaped charge parameters.

Bibliography:
  1. Petushkov V. G. Pod red. B.Ye.Patona, Priminenie vzryva v svarochnoy technike, K.: Nauk. dumka, 2005, 754 s.
  2. Physika vzryva. Izd. tretie, t. ІІ. Pod red. L. P. Orlenko. Nauka, 2004, 644 s.
  3. Baum F. A., Stanyukovich K. P., Shekhter B. I. Physika vzryva. Gos. izd. FM lit. M. 1959, 800 s.
  4. Kolesnikov K. S., Kozlov V. I., Kokushkin V. V. Dynamika razdeleniya stupeney letatelnykh apparatov. M.: Mashinostroenie. 1977, 224 s.
  5. Kumulyativniy efect ta iogo vykorystannya dlya rozdilennya raketno-kosmichnykh elementiv za dopomogou pyrotechnichnykh prystroiv. Ye. S. Bolyubash. Materialy XVII naukovykh chytan’ «Dniprovska orbita – 2022» (26–28 zhovtnya). Dnipro, 2022. 263 s.
  6. ISO 16269-6:2003 Statistical interpretation of data – Part 6: Determination of statistical tolerance intervals (IDT).
  7. Kobzar A. N. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov. M.: Phizmatlit, 2006, 816 s.
Downloads: 14
Abstract views: 
652
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Phoenix; Ashburn; Seattle; Des Moines; Boardman; Ashburn7
Ukraine Dnipro; Dnipro; Dnipro3
Singapore Singapore; Singapore2
Finland Helsinki1
Netherlands Amsterdam1
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS

Keywords cloud

]]>
10.1.2020 Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM https://journal.yuzhnoye.com/content_2020_1-en/annot_10_1_2020-en/ https://journal.yuzhnoye.com/?page_id=31037
Key words: solid propellant charge mass , propellant combustion rate , combustion chamber pressure , operation time in starting and cruise modes , combustion chamber pressure difference Bibliography: 1. solid propellant charge mass , propellant combustion rate , combustion chamber pressure , operation time in starting and cruise modes , combustion chamber pressure difference .
]]>

10. Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 99-106

DOI: https://doi.org/10.33136/stma2020.01.099

Language: Russian

Annotation: The main solid rocket motors of surface-to-air missiles and some short-range missiles have, as a rule, two operation modes – starting (augmented rating) and cruise (with decreased propellant consumption level). The methods to calculate intraballistic characteristics of such motors have a number of peculiarities, which set them apart from the methods of determining the characteristics of motors with constant propellant consumption level. The purpose of this article is to analyze such peculiarities, design methods, to find interrelation between the parameters of propellant consumption diagram, to determine the impact on the latter of motor design features and propellant characteristics. To achieve this goal, the method of analytical dependencies was developed. The equations obtained show that the required parameters of diagrams (including consumption-thrust characteristics difference between the starting and cruise modes) can be ensured due to varying either case diameter or propellant combustion rate or due to combined variation of these values. In practice, the cases are possible when for some reasons it does not seem possible to vary the case diameter or propellant combustion rate and the requirements to consumption diagram cannot be satisfied to the full extent. The task of motor developer in that case consists in determination of acceptable (alternative) propellant consumption diagrams that would be closest to required. The proposed method is based on calculation and construction of nomograms of dependencies of relative propellant consumption in cruse mode on relative time of starting leg at different propellant combustion rates and constant (required) case diameter and vice versa, at different values of case diameter and constant (available) propellant combustion rate. Using these nomograms, the rocket developer can determine the propellant consumption diagram acceptable for the rocket. In a number of cases, design limitations for separate main motor assemblies are imposed on consumption characteristic diagram that have an impact on its required parameters. The presented materials allow evaluating that impact and contain the proposals to remove it. The presented method allows quickly determining the conditions needed to fulfill required propellant combustion products consumption diagrams and in case of nonfulfillment of these conditions – allow presenting alternative options for selection of most acceptable one.

Key words: solid propellant charge mass, propellant combustion rate, combustion chamber pressure, operation time in starting and cruise modes, combustion chamber pressure difference

Bibliography:
1. K vyboru velichiny davliniia v kamere sgoraniia marshevykh RDTT: tekhn. otchet / GP “KB “Yuzhnoye”. Dnipro, 2017. 19 s.
2. Enotov V. G., Kushnir B. I., Pustovgarova Е. V. Avtomatizirovannaia proektnaia otsenka kharakteristik marshevykh dvigatelei na tverdom toplive s korpusom iz vysokoprochnykh metallicheskikh materialov takticheskikh i operativno-takticheskikh raket: ucheb.-metod. posobie / pod red. А. S. Kirichenko. Dnepropetrovsk, 2014. 72 s.
3. Sorkin R. Е. Gasotermodinamika raketnykh dvigatelei na tverdom toplive. М, 1967. 368 s.
Downloads: 31
Abstract views: 
1144
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Los Angeles; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Unknown Melbourne1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
10.1.2020  Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM
10.1.2020  Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM
10.1.2020  Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM

Keywords cloud

]]>
19.1.2020 Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO https://journal.yuzhnoye.com/content_2020_1-en/annot_19_1_2020-en/ Wed, 13 Sep 2023 12:02:02 +0000 https://journal.yuzhnoye.com/?page_id=31074
The pyrobolts are separated into parts using the pyrotechnical charge placed inside the case. By method of explosive substance action on case structural elements, the pyrobolts are divided into two types: the pyrobolts using the shock wave formed at detonation of brisant explosive substance for case wall destruction and the pyrobolts using the pressure of gases arising at pyrotechnical charge blasting.
]]>

19. Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 170-176

DOI: https://doi.org/10.33136/stma2020.01.170

Language: Russian

Annotation: The pyrobolts, or explosive bolts, belong to the pyrotechnical devices with monolithic case consisting o f the cap, as a rule with hexagonal surface, and of cylindrical part with thread. The pyrobolts are separated into parts using the pyrotechnical charge placed inside the case. Owing to the simple design, reliability and short action time, the pyrobolts have found wide application in aerospace engineering for separation of assemblies and bays, in particular, stages, head modules, launching boosters, etc. So, for example, about 400 pyrobolts are used in the Proton launch vehicle. The designs of pyrobolts are markedly different. By method of explosive substance action on case structural elements, the pyrobolts are divided into two types: the pyrobolts using the shock wave formed at detonation of brisant explosive substance for case wall destruction and the pyrobolts using the pressure of gases arising at pyrotechnical charge blasting. By method of separation into parts, they are divided into fragmenting pyrobolts with ridge-cut, with piston, and shear pyrobolts. The paper deals with the design of various types of pyrobolts, their disadvantages are considered. The Yuzhnoye SDO-developed pyrobolt of shear type with segments is presented that uses radial shear forces of segments located in the hole of cylindrical part to separate the case parts. The above segments a re actuated using a rod with sealing rings and a piston connected to the rod through a rubber gasket; the piston moves under pressure of gases formed during pyro cartridge action. The following calculations are presen ted: strength analyses with determination of case load-carrying capacity; power analyses with justification of pyro cartridge selection for pyrobolt actuation. In the developed pyrobolt of shear type with segments, the case parts are separated without considerable shock loads and without high-temperature gases and fragments release into environment, ensuring reliable separation of bays and assemblies without damaging sensitive equipment.

Key words: explosive bolt, shock wave, brisant explosive substance, pyro cartridge, electric igniting fuse, high-temperature gases

Bibliography:
1. Mashinostroenie. Entsiklopediia / А. P. Adzhian i dr.; pod red. V. P. Legostaeva. М., 2012. Т. IV-22. V 2-kh kn. Kn. 1. 925 s.
2. Bement L. J., Schimmel M. L. A Manual for Pyrotechnic Design, Development and Qualification: NASA Technical Memorandum 110172. 1995.
3. Yumashev L. P. Ustroistvo raket-nositelei (vspomagatelnye sistemy): ucheb. posob. Samara, 1999. 190 s.
4. Lee J., Han J.-H., Lee Y., Lee H. Separation characteristics study of ridge-cut explosive bolts. Aerospace Science and Technology. 2014. Vol. 39. Р. 153-168. https://doi.org/10.1016/j.ast.2014.08.016
5. Yanhua L., Jingcheng W., Shihui X., Li C., Yuquan W., Zhiliang L. Numerical Study of Separation Characteristics of Piston-Type Explosive Bolt. Shock and Vibration. https://doi.org/10.1155/2019/2092796
6. Yanhua L., Yuan L., Xiaogan L., Yuquan W., Huina M., Zhiliang L. Identification of Pyrotechnic Shock Sources for Shear Type Explosive Bolt. Shock and Vibration. https://doi.org/10.1155/2017/3846236
Downloads: 34
Abstract views: 
1530
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Columbus; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Kyiv; Kyiv; Dnipro3
China Shanghai1
India1
Finland Helsinki1
Indonesia1
Romania Voluntari1
Netherlands Amsterdam1
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO

Keywords cloud

]]>
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring https://journal.yuzhnoye.com/content_2018_2-en/annot_16_2_2018-en/ Thu, 07 Sep 2023 12:13:23 +0000 https://journal.yuzhnoye.com/?page_id=30792
2018 (2); 139-142 DOI: https://doi.org/10.33136/stma2018.02.139 Language: Russian Annotation: The structure examined herein aims to keep fuel from entering the space behind the cuff, evacuate the space behind the cuff, reliably fasten the cuff to the thermal protective coating of the bottom in the process of charge forming, easily release the cuff after charge forming, and remove the support structure elements from the casing after charge polymerization when equipping. The structure was tested in the process of fueling the solid rocket motor casing and during charge polymerization. The improved structure ensured that fuel did not enter the space behind the cuff; it was removed easily after charge forming. Key words: insert , charge , ring , cuff Bibliography: 1. Solid Rocket Motor Charged Case: Patent 2418187C1 Russian Federation: MPK F02K 9/34 (2006:01) / insert , charge , ring , cuff .
]]>

16. Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 139-142

DOI: https://doi.org/10.33136/stma2018.02.139

Language: Russian

Annotation: The structure examined herein aims to keep fuel from entering the space behind the cuff, evacuate the space behind the cuff, reliably fasten the cuff to the thermal protective coating of the bottom in the process of charge forming, easily release the cuff after charge forming, and remove the support structure elements from the casing after charge polymerization when equipping. The structure was tested in the process of fueling the solid rocket motor casing and during charge polymerization. In order to comply with the specified requirements the cuff functions were identified, the structures previously developed were analyzed, and a new structure was designed and improved after testing. The improved structure ensured that fuel did not enter the space behind the cuff; it was removed easily after charge forming. Conclusions proved the suitability of this stricture.

Key words: insert, charge, ring, cuff

Bibliography:
1. Solid Rocket Motors Design / Under the editorship of L. N. Lavrov. М., 1993. 214 p.
2. Solid Rocket Motor Charged Case: Patent 2418187C1 Russian Federation: MPK F02K 9/34 (2006:01) / M. I. Sokolovsky, V. Z. Karimov, Y. B. Nelzin, N. N. Karmanov, B. A. Nesterov; Applicant and patent holder OJSC NPO Iskra. No. 2009146654; claimed 15.12.09; published 10.05.11, Bulletin No. 13.
Downloads: 28
Abstract views: 
980
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Los Angeles;; Plano; Columbus; Phoenix; Monroe; Ashburn; Seattle; Boardman; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.2.2016 A New Method of Testing Oil-Filled Current Transformers for Explosion-Proofness https://journal.yuzhnoye.com/content_2016_2-en/annot_15_2_2016-en/ Tue, 06 Jun 2023 12:04:16 +0000 https://journal.yuzhnoye.com/?page_id=28331
2016 (2); 92-97 Language: Russian Annotation: The results of tests of high-voltage measuring current transformers TFRM with discharge valves and reinforced porcelain cover, in which transformer oil is used as internal insulation, by means of explosive blasting simulating short circuit inside current transformer, are under consideration.
]]>

15. A New Method of Testing Oil-Filled Current Transformers for Explosion-Proofness

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (2); 92-97

Language: Russian

Annotation: The results of tests of high-voltage measuring current transformers TFRM with discharge valves and reinforced porcelain cover, in which transformer oil is used as internal insulation, by means of explosive blasting simulating short circuit inside current transformer, are under consideration.

Key words:

Bibliography:
Downloads: 31
Abstract views: 
524
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Miami; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn22
Singapore Singapore; Singapore; Singapore3
Ukraine Dnipro; Dnipro2
Unknown Brisbane1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
15.2.2016 A New Method of Testing Oil-Filled Current Transformers for Explosion-Proofness
15.2.2016 A New Method of Testing Oil-Filled Current Transformers for Explosion-Proofness
15.2.2016 A New Method of Testing Oil-Filled Current Transformers for Explosion-Proofness
]]>
4.2.2016 Experimental Investigations of Possibility of Creating Impulse SRM with Short Operation Period https://journal.yuzhnoye.com/content_2016_2-en/annot_4_2_2016-en/ Tue, 06 Jun 2023 11:49:59 +0000 https://journal.yuzhnoye.com/?page_id=28308
It is suggested to use the existing gunpowders as a charge for impulse SRM.
]]>

4. Experimental Investigations of Possibility of Creating Impulse SRM with Short Operation Period

Organization:

Yangel Yuzhnoye State Design Office1, Dnipro, Ukraine; SSRI, Shostka, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2016 (2); 30-34

Language: Russian

Annotation: The paper considers possible ways of the development of impulse SRM with operating time from 0.02 to 0.05 s. The tests of prototype motor show the development capability of such motor. It is suggested to use the existing gunpowders as a charge for impulse SRM.

Key words:

Bibliography:
Downloads: 28
Abstract views: 
661
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Miami; Dublin; Phoenix; Monroe; Ashburn; Ashburn; Boardman; Seattle; Seattle; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
4.2.2016 Experimental Investigations of Possibility of Creating Impulse SRM with Short Operation Period
4.2.2016 Experimental Investigations of Possibility of Creating Impulse SRM with Short Operation Period
4.2.2016 Experimental Investigations of Possibility of Creating Impulse SRM with Short Operation Period
]]>
21.1.2019 Optimization of Geometrical Shape of Isolation Valve Blading Position https://journal.yuzhnoye.com/content_2019_1-en/annot_21_1_2019-en/ Wed, 24 May 2023 16:00:50 +0000 https://journal.yuzhnoye.com/?page_id=27726
With the goal of optimization various options of valve design were considered, different from the initial design in configuration of the inlet and discharge nozzles, notably various angle sizes, forming the stream profile, and lengths of the direct-flow sections.
]]>

21. Optimization of Geometrical Shape of Isolation Valve Blading Position

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 144-148

DOI: https://doi.org/10.33136/stma2019.01.144

Language: Russian

Annotation: One of the main design parameters of the automatic equipment in the launch vehicle’s pneumohydraulic systems is the flow friction characteristic, which represents the proportionality factor between the automatic equipment pressure differential and velocity head. The flow friction characteristic of the completely open automatic device should have very small value with required dimensions and mass. With decrease of the pressure losses, the required upstream pressure of the propulsion system is ensured with smaller pressurization of the tanks. It results in the decrease of the required pressurization gas volume, which boosts reduction of the performance of the launch vehicle as a whole. This paper describes the method of reduction of the flow friction characteristic of the dividing valve, optimizing the geometric shape of the flow passage. The problem of minimization of the valve’s flow friction characteristic is considered with the specified mass and design dimensions restrictions. The initial design of the valve was developed, taking into account the specified requirements, literature references and parameters of the analogue units. With the goal of optimization various options of valve design were considered, different from the initial design in configuration of the inlet and discharge nozzles, notably various angle sizes, forming the stream profile, and lengths of the direct-flow sections. Four options of the valve design were calculated using numerical methods of ANSYS CFX software. Navier – Stokes equations and k-ω SST turbulence model were used. Based on the calculations results the optimal design was selected. Initial design of the valve was compared with the optimal one. The flow friction characteristic of the optimal valve design decreased by 26 % in comparison with initial design with insignificant change of mass and dimensions. The design of the developed dividing valve can be involved in the design of the new launch vehicles.

Key words: automation devices, valve, launch vehicle, design optimization, ANSYS CFX

Bibliography:
1. Gurevich D. F. Raschet i konstruirovanie truboprovodnoi armatury: Raschet truboprovodnoi armatuty. 5-e izd. M.: Izd-vo LKI, 2008. 480 p.
2. Yanshin B. I. Hydrodynamicheskie characteristiki zatvorov i elementov truboprovodov. M.: Mashinostroenie, 1965. 259 p.
3. Idelchik I. Ye. Spravochnik po hydrovlicheskim soprotivleniyam / Pod red. M. O. Steinberga. 3-e izd., pererab. i dop. M.: Mashinostroenie, 1992. 672 p.
4. Ansys CFX Solver Theory Guide [Electronniy resurs] / ANSYS Inc., 2012. Rezhim dostupa: http://www1.ansys.com/customer/content/ documentation/180/cfx_thry.pdf.
Downloads: 27
Abstract views: 
436
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Columbus; Phoenix; Monroe; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn16
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Odessa2
Romania Voluntari1
Netherlands Amsterdam1
21.1.2019 Optimization of Geometrical Shape of Isolation Valve Blading Position
21.1.2019 Optimization of Geometrical Shape of Isolation Valve Blading Position
21.1.2019 Optimization of Geometrical Shape of Isolation Valve Blading Position

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins https://journal.yuzhnoye.com/content_2019_1-en/annot_14_1_2019-en/ Wed, 24 May 2023 16:00:23 +0000 https://journal.yuzhnoye.com/?page_id=27719
Analysis of experimental and computation data as applied to solid-propellant rocket engine shows that the most dangerous zones, which define the service life, are the fuel charge channel (deformations at launch), a fuel-body coupling zone (breakaway coupling stress) and a “lock” zone of the release collar (concentration of shear and breakaway stresses and deformations).
]]>

14. Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 95-101

DOI: https://doi.org/10.33136/stma2019.01.096

Language: Russian

Annotation: Service life (resource) of the device (system, structure, material) is one of the major factors, which defines the reliable performance of the device or necessity of its replacement. The purpose of this paper is to develop the engineering methodology to estimate the service life of the device to support the well-founded design decision-making. The methodology of estimation of the service life of material or structure is based on the generalization of great amount of Yuzhnoye SDO experimental data and theoretical research on the impact of various factors (properties of materials, loads, storage and operation conditions) on their service life on the ground of strength analysis. At the same time, service life definition is based on the results of stress and deformation analyses and their comparison with strength properties of the applied material (tensile strength and deformation properties). Strength properties of the material should be reduced to test conditions in terms of temperature, pressure, rate of loading, degrees of material aging etc. Methodology provides the estimation of safety margins in all phases of storage and operation of the device, consideration of the impact of the active factors (mass, temperature, loading, process of material aging), performance of calculations for the chosen specific zones of the device. It is shown that the service life estimation is in general case a probabilistic observation because of the random combination of the influencing factors (strength properties, storage and operation conditions, loads). Analysis of experimental and computation data as applied to solid-propellant rocket engine shows that the most dangerous zones, which define the service life, are the fuel charge channel (deformations at launch), a fuel-body coupling zone (breakaway coupling stress) and a “lock” zone of the release collar (concentration of shear and breakaway stresses and deformations). Developed methodological guidelines of the engineering estimate of the service life can be used as the computational basis for the service life of materials and structures in the phase of system design and updating of the assumed design solutions.

Key words: stress, deformation, service life, aging, load

Bibliography:

1. Lyashevskiy A. V., Mironov Ye. A., Vedernikov M. V. Prognozirovanie srokov prigodnosti tverdykh raketnykh topliv metodom Roentgen-computrnoy tomografii// Aviatsionnaya i raketno-kosmichaskaya technika. №2. 2015. P. 118-123.
2. Schubert H., Menke K. Service Life Determination of Rocket Motors by Comprehensive Property Analysis of Propellant Grain / Athens, Greece, May, 1996, Simposium. №41 P. 1-10.
3. Hufferd W. L. Service Life Assessment for Space Launch Vehicles / Athens, Greece, May, 1996, Simposium. №46. P. 1-9.
4. Faulkner G. S., Tod D. Service Life Prediction Methodologies Aspects of the TTCP KTA-14 UK Programme / Athens, Greece, May, 1996, Simposium. – №24. P. 1-13.
5. Francis E. C. (England), Busswell H. J. Improvements in Rocket Motor Service Life Prediction / Athens, Greece, May, 1996, Simposium. №27. P. 1-13.
6. Collingwood G. A., Dixon M. D., Clark L. M., Becker E. B. Solid Rocket Motor Service Life Prediction Using Nonlinear Viscoelastic Analysis and Probabilistic Approach / Athens, Greece, May, 1996, Simposium. №29. P. 1-8.
7. Zharkov A. S., Anisimov I. I., Maryash V. I. Physiko-chimichaskie process v izdeliyakh iz vysokoenergetycheskykh kondensirovannykh materialov pri dlitelnoy ekspluatatsii/ Physicheskaya mezomechanika. №9/4. 2006. P. 93-106.
8. Gul’ V. Ye. Struktura i prochnost’ polymerov. M.: Chimia, 1971. P. 10-23, 189-209.
9. Pavlov P. A. Osnovy engeneernykh raschetov elementov machin na ustalostnuyu i dlitelnuyu prochnost’. L.: Mashinostroenie, 1988. P. 65-70.
10. Ushkin N. P. Sposoby proektnoy otsenki resursa RDTT i obespechaniya ego dlitelnoy ekspluatatsii/ Kosmicheskaya technika. Raketnoye vooruzhenie: Sb. nauch.- techn. st. 2016. Vyp. 1. Dnepropetrovsk: GP KB «Yuzhnoye». P. 110-116.

Downloads: 31
Abstract views: 
204
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Detroit; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
India Tiruchchirappalli1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
13.1.2016 The Impact of Diaphragm’s Shape on Gas Dynamic Flow Characteristics in Small-Size SRM Combustion Chamber https://journal.yuzhnoye.com/content_2016_1/annot_13_1_2016-en/ Tue, 23 May 2023 13:08:28 +0000 https://journal.yuzhnoye.com/?page_id=27627
2016 (1); 82-87 Language: Russian Annotation: By way of example of small-size motor with one-grain charge, the possibilities are shown that open up for a designer when selecting the optimal configuration of diaphragm using the Ansys (CFX) software package.
]]>

13. The Impact of Diaphragm’s Shape on Gas Dynamic Flow Characteristics in Small-Size SRM Combustion Chamber

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (1); 82-87

Language: Russian

Annotation: By way of example of small-size motor with one-grain charge, the possibilities are shown that open up for a designer when selecting the optimal configuration of diaphragm using the Ansys (CFX) software package. The calculation results are compared with the experimental data obtained during hot-fire bench tests of experimental SRM.

Key words:

Bibliography:
Downloads: 27
Abstract views: 
311
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn14
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro; Dnipro;3
Romania Voluntari1
Netherlands Amsterdam1
13.1.2016 The Impact of Diaphragm’s Shape on Gas Dynamic Flow Characteristics in Small-Size SRM Combustion Chamber
13.1.2016 The Impact of Diaphragm’s Shape on Gas Dynamic Flow Characteristics in Small-Size SRM Combustion Chamber
13.1.2016 The Impact of Diaphragm’s Shape on Gas Dynamic Flow Characteristics in Small-Size SRM Combustion Chamber
]]>