Keywords cloud
DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products LLC1; FED Joint Stock Company2
Page: Kosm. teh. Raket. vooruž. 2024, (1); 129-135
DOI: https://doi.org/10.33136/stma2024.01.129
Language: Ukrainian
Key words: leaktightness of articles, fluorosiloxane rubber, rubber, temperature of the hot climate, physical-mechanical properties of the rubber, climatic endurance tests, elastic properties, warranty life
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | Mountain View; San Jose; Saint Louis; Los Angeles; Los Angeles; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Los Angeles; Chicago; Columbus; Ashburn; Portland; San Mateo; Ashburn; Ashburn; Ashburn; Seattle | 22 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto | 6 |
China | Pekin; Pekin; Shenzhen; Pekin | 4 |
Germany | Falkenstein; Düsseldorf; Falkenstein; Leipzig | 4 |
India | Mumbai | 1 |
Singapore | Singapore | 1 |
France | 1 | |
Thailand | Songkhla | 1 |
The Republic of Korea | Seoul | 1 |
Netherlands | Amsterdam | 1 |
Ukraine | Kremenchuk | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33
DOI: https://doi.org/10.33136/stma2020.01.026
Language: Russian
Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability
1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Matawan; Boydton; Plano; Miami; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Houston; Boardman; Mountain View; Mountain View; Seattle; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Seattle | 43 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 11 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 8 |
Ukraine | Dnipro; Odessa; Kyiv; Dnipro | 4 |
Germany | ;; Falkenstein | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Great Britain | London | 1 |
Unknown | 1 | |
Romania | Voluntari | 1 |
Poland | Gdańsk | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2020, (1); 90-98
DOI: https://doi.org/10.33136/stma2020.01.090
Language: Russian
Key words: load-bearing shell, permeability, cryogenic propellant, relative deformations, linear thermal expansion coefficient
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Columbus; Matawan; Baltimore; Los Angeles; North Bergen; Dublin; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman | 38 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 11 |
Canada | Toronto; Toronto; Toronto; Toronto; Monreale | 5 |
Unknown | ;; | 3 |
Germany | ; Falkenstein | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Ukraine | Dnipro; Odessa | 2 |
Malaysia | Kuala Lumpur | 1 |
Finland | Helsinki | 1 |
Ireland | Dublin | 1 |
Romania | Voluntari | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3
Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56
DOI: https://doi.org/10.33136/stma2020.01.044
Language: Russian
Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Ashburn; Columbus; Matawan; Baltimore;; North Bergen; Boydton; Plano; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Quinton; Ashburn; Mountain View; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn | 44 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 7 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 7 |
Ukraine | Dnipro; Odessa; Dnipro | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Ethiopia | Addis Ababa | 1 |
Germany | Falkenstein | 1 |
Latvia | Riga | 1 |
Romania | Voluntari | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2018 (2); 57-67
DOI: https://doi.org/10.33136/stma2018.02.057
Language: Russian
Key words: rocket engine automatic units, pneumatic test bench, metal hose, corrugated shell, toroidal vortex, longitudinal-lateral oscillations
Full text (PDF) || Content 2018 (2)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Ashburn; Ashburn; Matawan; Plano; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Ashburn; Houston; Ashburn; Mountain View; Mountain View; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Seattle | 39 |
Canada | Toronto; Toronto; Toronto; Toronto; Monreale | 5 |
Singapore | Singapore; Singapore; Singapore; Singapore | 4 |
Ukraine | Dnipro; Dnipro | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Unknown | Brisbane | 1 |
Finland | Helsinki | 1 |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |
Uzbekistan | Tashkent | 1 |
The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3
Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37
DOI: https://doi.org/10.33136/stma2019.01.028
Language: Russian
Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur
1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.
Full text (PDF) || Content 2019 (1)
Country | City | Downloads |
---|---|---|
USA | Ashburn; Springfield; Matawan; North Bergen; Plano; Miami; Miami; Miami; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Houston; Houston; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn | 41 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 11 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 9 |
Germany | Frankfurt am Main; Frankfurt am Main; Falkenstein | 3 |
Unknown | Hong Kong; | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
India | 1 | |
Romania | Voluntari | 1 |
Ukraine | Dnipro | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Zaporizhzhia National University, Zaporizhzhia, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2019, (1); 21-27
DOI: https://doi.org/10.33136/stma2019.01.021
Language: Russian
Key words: sandwich structure, interstage bay, finite-element model, manufacturing deviations, test loads
1. Vorovich I. I., Shlenev M. A. Plastiny I obolochki // Itogi nauki. Mechanika: Sbornik obzorov. M.: Nauka, 1963. P. 91–176.
2. Grigolyuk E. I., Kogan F. A. Sovremennoe sostoyanie teorii mnogosloynykh obolochek/ Prikladnaya mechanika. 972. T. 8, № 6. P. 3–17.
3. Grigolyuk E. I., Kulikov G.M. Razvitie obschego napravlenia v teorii mnogo – р max=630…651 kg/cm2/ Kosmicheskay technika. Raketnoe vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 27 sloinykh obolochek/ Mechanika compositnykh materialov. 1972. T. 8, № 6. P. 3–17.
4. Grigorenko Ya. M., Vasilenko A. T., Pankratova N. D. K otsenke dopuscheniy teorii trekhsloinykh obolochek s zapolnitelem // Prikladnaya mechanika. 1984. T. 20, № 5. P. 19–25.
5. Dudchenko A. A., Lurie S. A., Obraztsov I. F. Anizotropnye mnogosloynye plastiny I obolochki / Itogi nauki I techniki. Mechanika deformiruemogo tverdogo tela. T. 15. M.: VINITI, 1983. P. 3–68.
6. Kurshin L. M. Obzor rabot po raschetu trekhsloynykh plastin I obolochek / Raschet prostranstvennykh konstruktsiy. Vyp. 1. M.: Gosstroyizdat, 1962. P. 163–192.
7. Noor A. K., Burton W. S., Bert C. W. Computational Models for Sandwich Panels and Shells / Applied Mechanics Reviews. 1996. Vol. 49, No 3. P. 155–199.
8. Piskunov V. G., Rasskazov A. O. Razvitie teorii cloistykh plastin I obolochek // Prikladnaya mechanika. 2002. T. 38, № 2. P. 22–56.
9. Grigorenko Ya. M., Budak V. D., Grigorenko O. Ya. Rozvyazannya zadach teorii bolonok na osnovi disrento –continualnykh metodiv: Navch. posib. Mykolaiv: Ilion, 2010. 294 p.
10. Carrera Е., Brischetto S. A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates // Applied Mechanics Reviews. 2009. Vol. 62, No 1. P. 1–17.
11. Grigolyuk E. I. Uravnenia trekhsloinykh obolochek s legkim zapolnitelem // Izv. AN SSSR. Otdelenie tekhnicheskikh nauk. 1957. № 1. P. 77–84.
12. Ambartsumyan S. A. Teoria anizotropnykh plastin: Prochnost’, ustoichivost’ i kolebania. M.: Nauka, 1987. 360 p.
13. Carrera Е. Historical review of Zig-Zag theories for multilayered plates and shells / Applied Mechanics Reviews. 2003. Vol. 56, No 3. P. 287–308.
14. Teichman F. K., Wang C.-T. Finite deflections of Curved Sandwich Cylinders. Sherman M. Fairchild Publ. Fund. Inst. Aero. Sci. Paper FF-4. Institute of the Astronautical Sciences, 1951. P. 14.
15. Teichman F. K., Wang C.-T., Gerard G. Buckling of Sandwich Cylinders under Axial Compression / Journal of the Aeronautical Sciences. 1951. Vol. 18, No 6. P. 398–406.
16. Vinson J. R. Sandwich Structures / Applied Mechanics Reviews. 2001. Vol. 54, No 4. P. 201–214.
17. Lin J., Fei Y., Zhihua W., Longmao Z. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading / Latin American Journal of Solids and Structures. 2013. Vol. 10. P. 631–645.
18. Wu J., Pan L. Nonlinear theory of multilayer sandwich shells and its application (I) – general theory // Applied Mathematics and Mechanics. 1997. Vol. 18, No 1. P. 19–27.
19. Xu J., Wang C., Liu R. Nonlinear stability of truncated shallow conical sandwich shell with variable thickness / Applied Mathematics and Mechanics. 2000. Vol. 21, No 9. P. 977–986.
20. Komissarova G. L., Klyuchnikova V. G., Nikitenko V. N. K otsenke predelov primenimosti priblizhennykh teoriy sloistykh plastin// Prikladnaya mechanika. 1979. T. 15, № 6. P. 131–134.
21. Khalili S. M. R., Kheirikhah M. M., Malekzadeh Fard K. Buckling analysis of composite sandwich plates with flexible core using improved high-order theory / Mechanics of Advanced Materials and Structures. 2015. Vol. 22, No 4. P. 233–247.
22. Kien T. N., Tai H. T., Thuc P. V. A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates / Steel and Composite Structures. 2015. Vol. 18, No 1. P. 91–120.
23. Gorshkov A. G., Starovoitov E. I., Yarovaya A. V. Mechanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsiy. М.: Fizmatlit, 2005. 576 p.
24. Chumachenko Ye. N., Polyakova T. V., Aksenov A. S. i dr. Matematicheskoe modelirovanie v nelineinoy mechanike: Obzor programmnykh complexov dlya resheniya zadach modelirovania slozhnykh system, Pr-2155. M.: Institut kosmicheskykh issledovaniy RAN, 2009. 44 p.
25. Opyt i novye tekhnologii inzhenernogo analiza v interesakh kosmosa: press-reliz / I. Novikov / GNKTs im. M. V. Khrunicheva. Rezhim dostupa: www.khrunichev.ru/ main.php?id=18mid=2132.
Full text (PDF) || Content 2019 (1)
Country | City | Downloads |
---|---|---|
USA | Matawan; North Bergen; North Bergen; Plano; Columbus; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Seattle; Ashburn; Houston; Ashburn; Ashburn; Ashburn; Mountain View; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn | 35 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 9 |
Canada | ; Toronto; Toronto; Toronto; Toronto; Monreale | 6 |
Unknown | Brisbane;; | 3 |
Netherlands | Amsterdam; Amsterdam; Amsterdam | 3 |
Germany | Frankfurt am Main; Frankfurt am Main; Falkenstein | 3 |
Finland | Helsinki | 1 |
Romania | Voluntari | 1 |
Ukraine | Dnipro | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2019, (1); 95-101
DOI: https://doi.org/10.33136/stma2019.01.096
Language: Russian
Key words: stress, deformation, service life, aging, load
1. Lyashevskiy A. V., Mironov Ye. A., Vedernikov M. V. Prognozirovanie srokov prigodnosti tverdykh raketnykh topliv metodom Roentgen-computrnoy tomografii// Aviatsionnaya i raketno-kosmichaskaya technika. №2. 2015. P. 118-123.
2. Schubert H., Menke K. Service Life Determination of Rocket Motors by Comprehensive Property Analysis of Propellant Grain / Athens, Greece, May, 1996, Simposium. №41 P. 1-10.
3. Hufferd W. L. Service Life Assessment for Space Launch Vehicles / Athens, Greece, May, 1996, Simposium. №46. P. 1-9.
4. Faulkner G. S., Tod D. Service Life Prediction Methodologies Aspects of the TTCP KTA-14 UK Programme / Athens, Greece, May, 1996, Simposium. – №24. P. 1-13.
5. Francis E. C. (England), Busswell H. J. Improvements in Rocket Motor Service Life Prediction / Athens, Greece, May, 1996, Simposium. №27. P. 1-13.
6. Collingwood G. A., Dixon M. D., Clark L. M., Becker E. B. Solid Rocket Motor Service Life Prediction Using Nonlinear Viscoelastic Analysis and Probabilistic Approach / Athens, Greece, May, 1996, Simposium. №29. P. 1-8.
7. Zharkov A. S., Anisimov I. I., Maryash V. I. Physiko-chimichaskie process v izdeliyakh iz vysokoenergetycheskykh kondensirovannykh materialov pri dlitelnoy ekspluatatsii/ Physicheskaya mezomechanika. №9/4. 2006. P. 93-106.
8. Gul’ V. Ye. Struktura i prochnost’ polymerov. M.: Chimia, 1971. P. 10-23, 189-209.
9. Pavlov P. A. Osnovy engeneernykh raschetov elementov machin na ustalostnuyu i dlitelnuyu prochnost’. L.: Mashinostroenie, 1988. P. 65-70.
10. Ushkin N. P. Sposoby proektnoy otsenki resursa RDTT i obespechaniya ego dlitelnoy ekspluatatsii/ Kosmicheskaya technika. Raketnoye vooruzhenie: Sb. nauch.- techn. st. 2016. Vyp. 1. Dnepropetrovsk: GP KB «Yuzhnoye». P. 110-116.
Full text (PDF) || Content 2019 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Baltimore;;; Plano; Miami; Miami; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Mountain View; Seattle; Seattle; Tappahannock; Portland; Portland; Portland; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Columbus; Ashburn; Des Moines; Boardman; Ashburn; Ashburn | 42 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 10 |
Ukraine | Kharkiv; Kyiv; Dnipro | 3 |
India | Karnal; Tiruchchirappalli | 2 |
Canada | Toronto; Toronto | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
China | Shanghai | 1 |
Unknown | 1 | |
Great Britain | London | 1 |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2016 (1); 110-116
Language: Russian
Key words:
Full text (PDF) || Content 2016 (1)
Country | City | Downloads |
---|---|---|
USA | Ashburn; Baltimore;; Cheyenne; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; North Charleston; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; Ashburn; Ashburn; Des Moines; Boardman; Boardman; Ashburn; Boardman; Seattle | 37 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 8 |
Ukraine | Kyiv; Kyiv; Drohobych; Dnipro; Dnipro; Dnipro | 6 |
Canada | Toronto; Toronto; Toronto | 3 |
Belgium | Brussels | 1 |
Cambodia | Phnom Penh | 1 |
India | Tiruchchirappalli | 1 |
Mongolia | 1 | |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |
Netherlands | Amsterdam | 1 |
Unknown | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2019, (2); 96-102
DOI: https://doi.org/10.33136/stma2019.02.096
Language: Russian
Key words: computer simulation, finite element method, calculation model, strength
Full text (PDF) || Content 2019 (2)
Country | City | Downloads |
---|---|---|
USA | Boardman; Matawan; Baltimore;; North Bergen; Plano; Columbus; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Quinton; Ashburn; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Ashburn; Des Moines; Des Moines; Boardman; Boardman; Ashburn; Ashburn | 40 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 6 |
Canada | Toronto; Toronto; Monreale | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Ukraine | Dnipro; Kyiv | 2 |
Cambodia | Phnom Penh | 1 |
India | Guntur | 1 |
Finland | Helsinki | 1 |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |