Search Results for “determination of sound pressure” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:34:50 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “determination of sound pressure” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall https://journal.yuzhnoye.com/content_2018_2-en/annot_7_2_2018-en/ Thu, 07 Sep 2023 11:12:23 +0000 https://journal.yuzhnoye.com/?page_id=30754
The intensive rotation around the ring axis creates considerable centrifugal forces; as a result, the dependence of pressure on gas density and the sound speed increase. As a result of modeling, it has been ascertained that because of the lateral oscillations of the wall, the propagation rate of gas pressure longitudinal waves (having the same wave length as in the experiments at test bench) turns out to be higher than adiabatic sound speed. Determination of Gas Parameters at Vessel Emptying Taking into Account Compressibility and Manifold Resistance.
]]>

7. Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 57-67

DOI: https://doi.org/10.33136/stma2018.02.057

Language: Russian

Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. The article presents the results of experiments and the task of theoretical justification of the effect is solved. It is indicated that its causes may be two mutually complementary factors – a decrease of gas compressibility at eddy motion and oscillations of metal hose wall. The physical model is considered that describes variation of gas elasticity and density in the conditions of high flow vorticity. It is supposed that in the near-wall layer of the channel, toroidal vortexes (vortex rings) are formed, which move into turbulent core of the flow where their size decreases and the velocity of rotation around the ring axis of torus increases. The spiral shape of the corrugation ensures also axial rotation, which increases vortexes stability. The intensive rotation around the ring axis creates considerable centrifugal forces; as a result, the dependence of pressure on gas density and the sound speed increase. The mathematical model has been developed that describes coupled longitudinal-lateral oscillations of gas and channel’s corrugated shell. It is indicated that in the investigated system, two mutually influencing wave types are present – longitudinal, which mainly transfer gas pressure pulses along the channel and lateral ones, which transfer the shell radial deformation pulses. As a result of modeling, it has been ascertained that because of the lateral oscillations of the wall, the propagation rate of gas pressure longitudinal waves (having the same wave length as in the experiments at test bench) turns out to be higher than adiabatic sound speed.

Key words: rocket engine automatic units, pneumatic test bench, metal hose, corrugated shell, toroidal vortex, longitudinal-lateral oscillations

Bibliography:
1. Shevchenko S. A. Experimental Investigation of Dynamic Characteristics of Gas Pressure Regulator in Multiple Ignition LRE Starting System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 49-68.
2. Shevchenko S. A., Valivakhin S. A. Results of Mathematical Modeling of Transient Processes in Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 39 (1082). P. 198-206.
3. Shevchenko S. A., Valivakhin S. A. Mathematical Model of Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 38 (1061). P. 195-209.
4. Shevchenko S. A., Konokh V. I., Makoter A. P. Gas Dynamic Resistance and Sound Speed in Channel with Corrugated Wall. NTU “KhPI” News. 2016. No. 20 (1192). P. 94-101.
5. Flexible Metal Hoses. Catalogue. Ufimsky Aggregate Company “Hydraulics”, 2001.
6. Loytsyansky L.G. Liquid and Gas Mechanics. М., 1978. 736 p.
7. Prisnyakov V. F. et al. Determination of Gas Parameters at Vessel Emptying Taking into Account Compressibility and Manifold Resistance. Problems of High-Temperature Engineering: Collection of scientific works. 1981. P. 86-94.
8. Kirillin V. A., Sychyov V. V., Sheydlin A. E. Technical Thermodynamics. М., 2008. 486 p.
9. Grekhov L. V., Ivashchenko N. A., Markov V. A. Propellant Equipment and Control Systems of Diesels. М., 2004. 344 p.
10. Sychyov V. V., Vasserman A. A., Kozlov A. D. et al. Thermodynamic Properties of Air. М., 1978. 276 p.
11. Shariff K., Leonard A. Vortex rings. Annu. Rev. Fluid Mech. 1992. Vol. 24. P. 235-279. https://doi.org/10.1146/annurev.fl.24.010192.001315
12. Saffman F. Vortex Dynamics. М., 2000. 376 p.
13. Akhmetov D. G. Formation and Basic Parameters of Vortex Rings. Applied Mechanics and Theoretical Physics. 2001. Vol. 42, No 5. P. 70–83.
14. Shevchenko S. A., Grigor’yev A. L., Stepanov M. S. Refinement of Invariant Method for Calculation of Gas Dynamic Parameters in Rocket Engine Starting Pneumatic System Pipelines. NTU “KhPI” News. 2015. No. 6 (1115). P. 156-181.
Downloads: 38
Abstract views: 
1357
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Ashburn; Matawan; Plano; Columbus; Phoenix; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
Unknown Brisbane1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Uzbekistan Tashkent1
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Keywords cloud

]]>
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source https://journal.yuzhnoye.com/content_2019_1-en/annot_9_1_2019-en/ Thu, 25 May 2023 12:09:50 +0000 https://journal.yuzhnoye.com/?page_id=27714
The method was developed that allows modeling the acoustic fields during integrated launch vehicle lift-off based on determination of acoustic sources type. The algorithm and program of calculation of sound pressure levels were developed in JAVA language. The characteristics of acoustic fields sound pressure levels were calculated depending on radiation frequency taking into account environmental temperature.
]]>

9. Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 64-71

DOI: https://doi.org/10.33136/stma2019.01.064

Language: Russian

Annotation: During lift-off of integrated launch vehicles, the propulsion system jet generates acoustic field. Therewith, the loads can be created that are critical for the launching equipment, rocket body and especially for the spacecraft, which are under the fairing. To take into account the effects on these elements, it is necessary to determine the characteristics of generated acoustic field. The method was developed that allows modeling the acoustic fields during integrated launch vehicle lift-off based on determination of acoustic sources type. In particular, modeling of Cyclone-4M ILV jet acoustic radiation by bulky source was performed. This provided the possibility to calculate acoustic pressure amplitudes in ILV ambient medium and to evaluate acoustic effect on the rocket body at certain points. The method is expected to be used to investigate kR wave parameter. The modeling of integrated launch vehicle propulsion system (ILV PS) jet acoustic field as bulky radiation source was performed in the rocket flight leg where ILV ascent altitude does not exceed ~ 25 m. In this case, one should be based on the value of boundary frequency fb =150 Hz which separates two types of acoustic field: fb ˂ 150 Hz – front of acoustic wave of spherical type, fb > 150 Hz – front of acoustic wave of flat type. The algorithm and program of calculation of sound pressure levels were developed in JAVA language. The characteristics of acoustic fields sound pressure levels were calculated depending on radiation frequency taking into account environmental temperature. The maximal acoustic pressure level in 150 Hz frequency in the payload area outside the fairing – 155 dB, in the instrumentation bay area – 157 dB, in the intertank bay area – 172 dB, in the aft bay area – 182 dB. In the frequencies lower than 150 Hz, the sound pressure levels are lower. The calculation data are presented graphically.

Key words: integrated launch vehicle, acoustic field, sound pressure

Bibliography:

1. Dementiev V. K. O maximalnykh akusticheskykh nagruzkakh na rekety pri starte/ V. K. Dementiev, G. Ye. Dumnov, V. V. Komarov, D.A. Melnikov// Kosmonavtika I raketostroenie. 2000. Vyp. 19. P. 44-55.
2. Tsutsumi S., Ishii T., Ut K., Tokudone S., Chuuouku Y., Wado K. Acoustic Design of Launch Pad for Epsilon Launch Vehicle / Proceedings of AJCPP2014 . Asian Joint Conference on Propulsion and Power, March 5- 8, 2014, Jeju Island, Korea. AJCPP2014-090.
3. Panda J., Mosher R., Porter D.J. Identification of Noise Sources during Rocket Engine Test Firings and a Rocket Launch a Microphone Phased-Array // NASA / TM2013-216625, December 2013. P. 1-20.
4. Sokol G. I. Metod opredeleniya vida istochnikov akusticheskogo izlucheniya v pervye secundy starta raket kosmicheskogo naznacheniya/ G. I. Sokol// Systemne proektuvannya ta analiz characteristic aerokosmichoi techniki: Zb. nauk. pr. 2018. XXIV. Dnipro: Lira, 2018. P. 91-101.
5. Sokol G. I., Frolov V. P., Kotlov V. Yu. / Volnovoy parameter kak kriteriy v osnove metoda issledovaniya akusticheskikh istochnikov pro starte raket/ Aviatsionno-kosmicheskaya technika I technologia. 2018. 3 (147), May-June 2018. Kharkov: KhAI, 2018. P. 4-13. DОІ:http://doi.org /10.20535/0203- 3771332017119600.
6. Rzhevkin S. N. Kurs lektsiy po teorii zvuka/ S. N. Rzhevkin. M.: MGU, 1960. 261 p.
7. Tyulon V. N. Vvedenie v teoriyu izlucheniya I rasseyaniya zvuka / V. N. Tyulin. M.: Nauka, 1976. 253 p.
8. Sapozhkov M. A. Electroakustica/ M. A. Sapozhkov. M.: Svyaz, 1978. 272 p.
9. Grinchenko V. T., Vovk V. V., Matsipura V. T.. Osnovy akustiki. Kyiv: Nauk. dumka, 2007. 640 p.
10. Ultrazvuk: Malaya enciclopedia. M.: Nauka, 1983. 400 p.
11. Volkov K. N. Turbulentnye strui – staticheskie modeli i modelirovanie krupnykh vikhrey/ K. N. Volkov, V. N. Emelyanov, V. A. Zazimko. M.: Fizmatlit, 2013. 960 p.
12. Schildt G. Java 8. Polnoe rukovodstvo. 9-e izd. M.: Wiliams, 2015. 137 p.

Downloads: 48
Abstract views: 
924
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Springfield; Matawan; Baltimore; Plano; Miami; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Boydton; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn31
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Toronto; Monreale4
Finland Helsinki1
Indonesia Surabaya1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Unknown1
Ukraine Dnipro1
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
8.2.2019 Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head https://journal.yuzhnoye.com/content_2019_2-en/annot_8_2_2019-en/ Mon, 15 May 2023 15:45:50 +0000 https://journal.yuzhnoye.com/?page_id=27210
Key words: Launch vehicle flight , Mach number , launch vehicle payload fairing , determination of sound pressure Bibliography: 1. Launch vehicle flight , Mach number , launch vehicle payload fairing , determination of sound pressure .
]]>

8. Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Institute of Hydromechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (2); 58-62

DOI: https://doi.org/10.33136/stma2019.02.058

Language: Russian

Annotation: The article considers the procedure for evaluation of acoustic stressing parameters at the observation point nearby the launch vehicle nose cone when passing the sectors with maximum velocity heads and close to 1 Mach numbers. And the problem is set to determine the overall sound pressure level and the corresponding levels in octave and 1/3-octave frequency bands. Procedure under consideration is based on the semi-empirical dependency of characteristics of the wideband aerodynamic noise, which occurs during the launch vehicle flight at high velocities due to the turbulent pressure fluctuations and dimensionless aerodynamic parameters of the main stream. General idea of this approach is to establish relation of the velocity heads with wall pressure fluctuations in the boundary layer, calculating shear stress (friction) on the shell surface based on relationships applicable in the boundary layer theory and engineering experience. Attempts of development of similar calculation models go back to the early efforts, dedicated to the study of the aeroacoustics of the launch vehicle in flight. Main advantages of the procedure are its simplicity and versatility since it can be used to determine the acoustic loads around the payload fairings of launch vehicles of different sizes and shapes within the wide range of flight velocities and altitudes.

Key words: Launch vehicle flight, Mach number, launch vehicle payload fairing, determination of sound pressure

Bibliography:
1. Raman K. R. A study of surface pressure fluctuations in hypersonic turbulent boundary layers. NASA CR-2386, 1974. 90 p. https://doi.org/10.2514/6.1973-997
2. Aviatsionnaya akustika/ pod red. A. G. Munina. М., 1986. Ch. 1. 248 s.
3. Aviatsionnaya akustika / pod red. A. G. Munina. М., 1986. Ch. 2. 264 s.
4. Kovalnogov N. N., Lukin N. M. Osnovy teorii i rascheta pogranichnogo sloya. Ulianovsk, 2000. 86 s.
5. Monin A. S., Yaglom A. M. Statisticheskaya hydromechanika. Mechanika turbulentnosti. M., 1965. Ch. 1. 640 s.
6. Vasiliev V. V., Morozov L. V., Shakhov V. G. Raschet aerodynamicheskykh characteristic letatelnykh apparatov. Samara, 1993. 78 s.
7. Yefimtsov B. M. Kriterii podobiya spektrov pristenochnykh pulsatsiy davleniy turbulentnogo pogranichnogo sloya. Acousticheskiy journal. 1984. T. 30, № 1. S. 58–61.
Downloads: 41
Abstract views: 
338
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; Des Moines; Des Moines; Boardman; Boardman; Ashburn; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Toronto; Monreale4
Germany Limburg an der Lahn; Falkenstein2
Finland Helsinki1
Unknown Hong Kong1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
8.2.2019 Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head
8.2.2019 Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head
8.2.2019 Evaluation of the external acoustic loads, acting on the rocket when it passes the leg with maximum velocity head

Keywords cloud

]]>