Search Results for “dynamic regulator” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:53:35 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “dynamic regulator” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 14.1.2020 On the problem of optimum control https://journal.yuzhnoye.com/content_2020_1-en/annot_14_1_2020-en/ Wed, 13 Sep 2023 11:02:31 +0000 https://journal.yuzhnoye.com/?page_id=31048
For regulation synthesis, the met hod is widely used of analytical construction of optimal regulator based on stabilizing matrix, which is obtained by solution of algebraic Riccati equation. Efficiency of the proposed method was verified by the example of adopted dynamic system, including non-stationary.
]]>

14. On the problem of optimum control

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 133-136

DOI: https://doi.org/10.33136/stma2020.01.133

Language: Russian

Annotation: The use of Langrangian multipliers at solution of optimal control problems in linear statement with qua dratic quality criterion leads to the necessity of solving boundary value problem with conditions for multipliers at the right end of control interval. Solution of the obtained equations for the purpose of regulation synthesis in forward time in this case does not produce stabilizing effect, as a rule. For regulation synthesis, the met hod is widely used of analytical construction of optimal regulator based on stabilizing matrix, which is obtained by solution of algebraic Riccati equation. However, in this case, there are some difficulties ‒ the necessity of calculating the stabilizing matrix, impossibility of calculating this matrix in non-stationary problem. The article proposes the regulation synthesis method by way of solving boundary value problem on regulation cycle i nterval. For this purpose, the differential equations for state parameters and Langrangian multipliers are expressed in the form of finite-difference linear relations. Taking into account that the state parameters and Langrangian multipliers are equal to zero at the end of cycle, the Langrangian multipliers at the beginning of cycle are determined by known values of state parameters for the same moment through solving the above linear system. The obtained values form the regulation law. In consequence of small duration of regulation cycle, an amplifying coefficient is introduced in the regulation law. Its value is determined based on results of preliminary modeling. Efficiency of the proposed method was verified by the example of adopted dynamic system, including non-stationary. The amplifying coefficient is fairly simply selected by the type of stabilization process. The proposed method may be used in the control systems of rockets of various purpose for motion parameters regulation.

Key words: optimal control, regulation law, Langrangian multiplier, regulation cycle interval, amplifying coefficient

Bibliography:
1. Braison A., Kho Yu-Shi. Prikladnaia teoriia optimalnogo upravleniia. М., 1972.
2. Larin V. B. O stabiliziruiushchikh i antistabiliziruiushchikh resheniiakh algebraicheskikh uravnenii Rikkati. Problemy upravleniia i informatiki. 1996. №1-2.
3. Aleksandrov А. G. Optimalnye i additivnye sistemy. М., 1989.
Downloads: 43
Abstract views: 
1031
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Boydton; Plano; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Seattle; Seattle; Portland; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn; Boardman; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Canada Toronto; Monreale2
Ukraine Kyiv; Dnipro2
Finland Helsinki1
Unknown1
Algeria Laghouat1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
14.1.2020  On the problem of optimum control
14.1.2020  On the problem of optimum control
14.1.2020  On the problem of optimum control

Keywords cloud

]]>
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall https://journal.yuzhnoye.com/content_2018_2-en/annot_7_2_2018-en/ Thu, 07 Sep 2023 11:12:23 +0000 https://journal.yuzhnoye.com/?page_id=30754
Experimental Investigation of Dynamic Characteristics of Gas Pressure Regulator in Multiple Ignition LRE Starting System.
]]>

7. Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 57-67

DOI: https://doi.org/10.33136/stma2018.02.057

Language: Russian

Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. The article presents the results of experiments and the task of theoretical justification of the effect is solved. It is indicated that its causes may be two mutually complementary factors – a decrease of gas compressibility at eddy motion and oscillations of metal hose wall. The physical model is considered that describes variation of gas elasticity and density in the conditions of high flow vorticity. It is supposed that in the near-wall layer of the channel, toroidal vortexes (vortex rings) are formed, which move into turbulent core of the flow where their size decreases and the velocity of rotation around the ring axis of torus increases. The spiral shape of the corrugation ensures also axial rotation, which increases vortexes stability. The intensive rotation around the ring axis creates considerable centrifugal forces; as a result, the dependence of pressure on gas density and the sound speed increase. The mathematical model has been developed that describes coupled longitudinal-lateral oscillations of gas and channel’s corrugated shell. It is indicated that in the investigated system, two mutually influencing wave types are present – longitudinal, which mainly transfer gas pressure pulses along the channel and lateral ones, which transfer the shell radial deformation pulses. As a result of modeling, it has been ascertained that because of the lateral oscillations of the wall, the propagation rate of gas pressure longitudinal waves (having the same wave length as in the experiments at test bench) turns out to be higher than adiabatic sound speed.

Key words: rocket engine automatic units, pneumatic test bench, metal hose, corrugated shell, toroidal vortex, longitudinal-lateral oscillations

Bibliography:
1. Shevchenko S. A. Experimental Investigation of Dynamic Characteristics of Gas Pressure Regulator in Multiple Ignition LRE Starting System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 49-68.
2. Shevchenko S. A., Valivakhin S. A. Results of Mathematical Modeling of Transient Processes in Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 39 (1082). P. 198-206.
3. Shevchenko S. A., Valivakhin S. A. Mathematical Model of Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 38 (1061). P. 195-209.
4. Shevchenko S. A., Konokh V. I., Makoter A. P. Gas Dynamic Resistance and Sound Speed in Channel with Corrugated Wall. NTU “KhPI” News. 2016. No. 20 (1192). P. 94-101.
5. Flexible Metal Hoses. Catalogue. Ufimsky Aggregate Company “Hydraulics”, 2001.
6. Loytsyansky L.G. Liquid and Gas Mechanics. М., 1978. 736 p.
7. Prisnyakov V. F. et al. Determination of Gas Parameters at Vessel Emptying Taking into Account Compressibility and Manifold Resistance. Problems of High-Temperature Engineering: Collection of scientific works. 1981. P. 86-94.
8. Kirillin V. A., Sychyov V. V., Sheydlin A. E. Technical Thermodynamics. М., 2008. 486 p.
9. Grekhov L. V., Ivashchenko N. A., Markov V. A. Propellant Equipment and Control Systems of Diesels. М., 2004. 344 p.
10. Sychyov V. V., Vasserman A. A., Kozlov A. D. et al. Thermodynamic Properties of Air. М., 1978. 276 p.
11. Shariff K., Leonard A. Vortex rings. Annu. Rev. Fluid Mech. 1992. Vol. 24. P. 235-279. https://doi.org/10.1146/annurev.fl.24.010192.001315
12. Saffman F. Vortex Dynamics. М., 2000. 376 p.
13. Akhmetov D. G. Formation and Basic Parameters of Vortex Rings. Applied Mechanics and Theoretical Physics. 2001. Vol. 42, No 5. P. 70–83.
14. Shevchenko S. A., Grigor’yev A. L., Stepanov M. S. Refinement of Invariant Method for Calculation of Gas Dynamic Parameters in Rocket Engine Starting Pneumatic System Pipelines. NTU “KhPI” News. 2015. No. 6 (1115). P. 156-181.
Downloads: 37
Abstract views: 
1313
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Ashburn; Matawan; Plano; Columbus; Phoenix; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
Unknown Brisbane1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Uzbekistan Tashkent1
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Keywords cloud

]]>
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases https://journal.yuzhnoye.com/content_2019_1-en/annot_3_1_2019-en/ Thu, 25 May 2023 12:09:10 +0000 https://journal.yuzhnoye.com/?page_id=27708
According to this trend the issues of synthesis of the dynamic regulator, observability and controllability for the orbital space plane are considered. Procedure of selection of the dynamic regulator parameters at the early phase of development of the control system for the orbital space plane motion about the center of mass is suggested. it is possible to develop the stable dynamic regulator, which provides the required speed and accuracy of the angular position of the orbital space plane during the orbital flight. Key words: vector , matrix , dynamic regulator , observability , controllability , stability Bibliography: 1. vector , matrix , dynamic regulator , observability , controllability , stability .
]]>

3. Analysis of Spacecraft Control Issues In Early Design Phases

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 15-20

DOI: https://doi.org/10.33136/stma2019.01.015

Language: Russian

Annotation: Mission control of the orbital space plane is one of the actual and complicated applied problems of the theory of mobile objects control. Dynamic configuration of this plane as an object of control is described by the system of non-linear differential equations of higher order. Research of stability of such system is a difficult problem. However, thanks to known theorems of Lyapunov, often stability of the real system can be estimated by the roots of the characteristic equation of the linearized system. Thereupon the stability analysis in the linear setting is the necessary link in the process of orbital space plane control system development. Among the methods of synthesis of the automatic control linear systems developed to date one can emphasize the trend, which has become widely-spread in the engineering area. According to this trend the issues of synthesis of the dynamic regulator, observability and controllability for the orbital space plane are considered. Procedure of selection of the dynamic regulator parameters at the early phase of development of the control system for the orbital space plane motion about the center of mass is suggested. Observability and controllability of the orbital space plane are considered. It is shown that the considered control system of the orbital space plane is observable and controllable, i.e. it is possible to develop the stable dynamic regulator, which provides the required speed and accuracy of the angular position of the orbital space plane during the orbital flight. Factors selection procedure is offered for the factors being the part of the control laws for the control system actuators.

Key words: vector, matrix, dynamic regulator, observability, controllability, stability

Bibliography:

1. Isenberg Ya. Ye., Sukhorebriy V. G. Proektirovanie sistem stabilizatsii nositeley kosmicheskikh apparatov. M.: Mashinostroenie, 1986. 220 p.
2. Kuzovkov N. T. Modalnoe upravlenie i nabludauschie ustroistva. M.: Mashinostroenie, 1976. 184 p.
3. Krasovskiy N. N. Teoria upravlenia dvizheniem. M.: Nauka, 1968. 475 p.
4. Larson Wiley J. and Wertz James R. (editors). Space mission analysis and design. Published Jointly by Microcosm, Inc. (Torrance, California) Kluwer Academic Publishers (Dordrecht / Boston / London), 1992. 865 p.
5. Sidi Marcel J. Spececraft Dynamics and Control. A Practical Engineering Approach. Israel Aircraft Industries Ltd. and Tel Aviv University. Cambridge University press, 1997. 409 p.

Downloads: 50
Abstract views: 
627
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Redmond; Plano; Columbus; Ashburn; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland;; San Mateo; Boydton; Boydton; Boydton; Boydton; Boydton; Boydton; Des Moines; Boardman; Boardman; Ashburn; Ashburn29
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Unknown Sidney;2
Romania; Voluntari2
Canada Toronto; Monreale2
Belgium Brussels1
Bangladesh Dhaka1
Finland Helsinki1
France1
Germany Falkenstein1
Netherlands Amsterdam1
Ukraine Dnipro1
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor https://journal.yuzhnoye.com/content_2019_1-en/annot_18_1_2019-en/ Wed, 24 May 2023 16:00:39 +0000 https://journal.yuzhnoye.com/?page_id=27723
Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor Authors: Oslavsky S. 2019, (1); 122-131 DOI: https://doi.org/10.33136/stma2019.01.122 Language: Russian Annotation: The basic results of the design calculations and mathematical modelling of the control processes in the precision high-speed servo drive are presented, as well as results of experimental studies of the functional mock-up of this servo drive’s movable gears of the throttle and fuel flow regulator of the ILV main engine. Major task of the studies was theoretical and experimental verification of the required static and dynamic accuracy of the servo drive in the process of try-out of the command signals reception from the main engine’s controller.
]]>

18. Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 122-131

DOI: https://doi.org/10.33136/stma2019.01.122

Language: Russian

Annotation: The basic results of the design calculations and mathematical modelling of the control processes in the precision high-speed servo drive are presented, as well as results of experimental studies of the functional mock-up of this servo drive’s movable gears of the throttle and fuel flow regulator of the ILV main engine. Major task of the studies was theoretical and experimental verification of the required static and dynamic accuracy of the servo drive in the process of try-out of the command signals reception from the main engine’s controller. In the phase of development, theoretical study of the linearized servo drive with application of transformations and theorems of Laplace passages to the limit is conducted. Analytical dependences between servo drive circuit parametres, its elements and characteristics of the control signals are obtained. Instrument errors and servostatic elasticity of the servo drive are calculated. Calculation model including the basic nonlinearities of this servo drive is prepared. Mathematical modelling of the control processes is conducted according to the computational model, varying the circuit and design parameters of the electric drive. Results of the theoretical studies were taken as input data for the requirements specification document to develop the executive unit with the electromotor, reduction gear and output shaft position sensor, and the control box. Functional mockups of the executive unit, control box, as well as the computer-controlled technological test console were manufactured on the basis of the requirements specification documents. The required scope of the laboratory-development tests of the functional mock-up of the servo drive was conducted. Results of the conducted activities confirm the achievement of the required accuracies of the servo drive in the laboratory environment.

Key words: control system, permanent-field synchronous motor, mathematical model, computational analysis

Bibliography:
1. Programma «Mayak», raketa kosmicheskogo naznacheniya, marsheviy dvigatel’ pervoi stupeni: Techn. proekt. Dnepropetrovsk: GP KB «Yuzhnoye», 2015. 490 p.
2. Controller marshevogo dvigatelya pervoi stupeni RKN: Poyasnitelnaya zapiska. Dnepr: GP KB «Yuzhnoye», 2017. 108 p.
3. Marsheviy dvigatel pervoi stupeni RKN: Technicheskoe zadanie na razrabotku electromechanicheskogo privoda mechanizmov drosselya i regulyatora raschoda goryuchego. Dnepr: GP KB «Yuzhnoye», 2016. 68 p.
4. Basharin A. V., Novikov V. A., Sokolovskiy G. G. Upravlenie electroprivodami: Uch. posob. dlya VUZov. L.: Energoizdat, 1982. 392 p.
5. Makarov I. M., Menskiy B. M. Lineinye avtomaticheskie systemy. – 2-e izd., pererab. i dop. M.: Mashinostroenie, 1982. 504 p.
6. Otchet po rezultatam ispytania maketnogo obraztsa electromechanicheskogo privoda mechanizmov drosselya i regulyatora goruchego. Dnepr: GP KB «Yuzhnoye», 2018. 50 p.
Downloads: 39
Abstract views: 
697
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Dublin; Dublin; Ashburn; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Unknown Melbourne;2
Algeria Algiers1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor
18.1.2019 Designing of Servo Driver of Throttle Mechanisms and Fuel Flow Regulator of ILV Main Motor

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>