Search Results for “electrohydraulic valve” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 10:50:19 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “electrohydraulic valve” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office https://journal.yuzhnoye.com/content_2018_2-en/annot_5_2_2018-en/ Thu, 07 Sep 2023 11:01:49 +0000 https://journal.yuzhnoye.com/?page_id=30749
For the European Vega launch vehicle fourth stage main engine assembly that has pressure propellant feeding system, the electrohydraulic valve with amplification and drainage was developed. The dependence of this electrohydraulic valve high speed from the line’s output length is decreased to the maximum due to the installation of Venturi nozzle at the output connecting branch. This electrohydraulic valve is operable at the pressure below 8 MPa, the action time is 0.08…0.12 s. Recently, Yuzhnoye State Design Office develops the apogee RD840 LRE with 400 N thrust, for the conditions of which the direct-action electrohydraulic valve was developed and tested with the following characteristics: pressure – up to 2.15 MPa, consumed power in operation mode – less than 7.1 W, action time – not more than 0.02 s, mass – 0.19 kg. Key words: electrohydraulic valve , electropneumatic valve , pneumohydraulic system , direct-action electric valve , electric valve with amplification , action time Bibliography: 1.
]]>

5. Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 34-48

DOI: https://doi.org/10.33136/stma2018.02.034

Language: Russian

Annotation: In the pneumohydraulic systems of liquid rocket engines and propulsion systems, electromagnetic valves that allow making the pneumohydraulic systems more simple and ensuring multiple ignition of liquid rocket engines have found wide application. The Yuzhnoye-developed electromagnetic valves are designed according to two schemes – of direct and indirect action. In the direct-action electromagnetic valves, the shutting-off device opens (closes) the throat with the force developed by electric magnet. They have gained acceptance in the pneumohydraulic systems with the working medium pressure of ~8.5 MPa, they are of simple design and have high operating speed (0.001…0.05 s). In the electromagnetic valves with amplification, the electromagnet armature is connected with control valve and the main shutting-off device moves due to the force from working medium pressure drop on it. They are used in the operating pressure range of 0.5…56 MPa, at that, the action time is 0.025…0.15 s. For the European Vega launch vehicle fourth stage main engine assembly that has pressure propellant feeding system, the electrohydraulic valve with amplification and drainage was developed. The dependence of this electrohydraulic valve high speed from the line’s output length is decreased to the maximum due to the installation of Venturi nozzle at the output connecting branch. This electrohydraulic valve is operable at the pressure below 8 MPa, the action time is 0.08…0.12 s. The present-day spacecraft gas-jet orientation and stabilization systems use as propulsion devices the electromagnetic valves with nozzles whose thrust is, as a rule, not more than 30 N and the working medium pressure is up to 24 MPa. Yuzhnoye State Design Office developed for 15B36 gas-jet system the electropneumatic valve with amplification and nozzle, which is operable at the pressure below 45 MPa, ensures the action frequency of up to 10 Hz and is capable of creating the thrust of 100 N on gaseous argon. To solve the task of decreasing the dependence of operability and high speed of electromagnetic valves with drainage and amplification on geometry of lines in which a valve is installed, the electropneumatic valve was developed that has spool elements ensuring reliable and quick action with long input lines of 0.004 m diameter. Its mass is 2…2.5 times lower than the mass of analogs. Recently, Yuzhnoye State Design Office develops the apogee RD840 LRE with 400 N thrust, for the conditions of which the direct-action electrohydraulic valve was developed and tested with the following characteristics: pressure – up to 2.15 MPa, consumed power in operation mode – less than 7.1 W, action time – not more than 0.02 s, mass – 0.19 kg. The presented electromagnetic valves by their technical and operational characteristics meet the highest world requirements and have found wide utility in liquid rocket engines and propulsion systems.

Key words: electrohydraulic valve, electropneumatic valve, pneumohydraulic system, direct-action electric valve, electric valve with amplification, action time

Bibliography:
1. Electric Hydraulic Valve: Patent 89948 Ukraine: MPK F 16K 32/02 / Shnyakin V. M., Konokh V. I., Kotrekhov B. I., Troyak A. B., Boiko V. S.; Applicant and patent holder Yuzhnoye State Design Office. а 2006 02543; claimed 09.03.2006; published 25.03.2010, Bulletin No. 6.
2. Boiko V. S., Konokh V. I. Stabilization of Opening Time of Electric Hydraulic Valve with Boost in Liquid Rocket Engine Hydraulic System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 39-48.
3. Electric Valve: Patent 97841, Ukraine: MPK F 16K 32/02 / Shnyakin V. M., Konokh V. I., Kotrekhov B. I., Troyak A. B., Boiko V. S., Ivashura A. V.; Applicant and patent holder Yuzhnoye State Design Office. а 2009 12002; claimed 23.11.2009; published 26.03.2012, Bulletin No. 6.
4. Boiko V. S., Konokh V. I. Increase of Action Stability of Electric Pneumatic Valve with Boost in the System with Increased Inlet Hydraulic Resistance. Aerospace Engineering and Technology: Scientific-Technical Journal. 2013. Issue 3 (100). P. 90-95.
5. Flying Vehicles Pneumatic Systems Units / Lyaskovsky I. F., Shishkov A. I., Romanenko N. T., Romanenko M. T., Chernov M. T., Yemel’yanov V. V. / Under the editorship of N. T. Romanenko. М., 1976. 176 p.
Downloads: 39
Abstract views: 
1455
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan;; Boydton; Plano; Dublin; Dublin; Dublin; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Boardman; Seattle; Ashburn; Portland; Portland; Des Moines; Boardman; Boardman; Ashburn22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Kyiv; Kyiv; Dnipro3
Unknown; Hong Kong2
Canada Toronto; Monreale2
Finland Helsinki1
Iran1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office

Keywords cloud

]]>
14.1.2017 Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve https://journal.yuzhnoye.com/content_2017_1/annot_14_1_2017-en/ Wed, 28 Jun 2023 11:39:18 +0000 https://journal.yuzhnoye.com/?page_id=29497
2017 (1); 88-94 Language: Russian Annotation: The configuration is considered of direct-action electrohydraulic valve ensuring wider operating range of the working fluid flow rate and pressure. The mathematical model of electrohydraulic valve is presented and the computational investigations of dynamic characteristics were performed. As a result of the investigations, the calculated dependencies were obtained that enable evaluating the design parameters impact on valve opening time when designing an electrohydraulic valve of given type. Electrohydraulic Valve / V.
]]>

14. Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 88-94

Language: Russian

Annotation: The configuration is considered of direct-action electrohydraulic valve ensuring wider operating range of the working fluid flow rate and pressure. The mathematical model of electrohydraulic valve is presented and the computational investigations of dynamic characteristics were performed. As a result of the investigations, the calculated dependencies were obtained that enable evaluating the design parameters impact on valve opening time when designing an electrohydraulic valve of given type.

Key words:

Bibliography:
1. Flying Vehicles Pneumatic Systems Units / I. F. Lyaskovsky, А. I. Shishkov, N. T. Romanenko, М. Т. Romanenko, М. Т. Chernov, V. V. Yemel’yanov; Under the editorship of N. T. Romanenko. М., 1976. 176 p.
2 Rotmansky O. I. Space Flying Vehicles Reaction Control Systems Valves / O. I. Rotmansky, I. R. Krichker. М., 1980. 136 p.
3. Useful Model Patent 95379 Russian Federation, MPK F16K32/02. Electromagnetic Stop Valve (Options) / Applicants and patent holders V. V. Zakharenkov, V. I. Kotelnikov. №2010106035/22; Claimed 19.02.2010; Published 20.08.2014, Bulletin No. 23. 4 p.: il.
4. Roters G. Electromagnetic Mechanisms. М., 1949. 522 p.
5. Patent 89948 Ukraine, MPK F16K32/02. Electrohydraulic Valve / V. M. Shnyakin, V. I. Konokh, B. I. Kotrekhov, А. B. Troyak, V. S. Boiko; Applicant and patent holder Yuzhnoye State Design Office, Dnipropetrovsk. а 2006 02543; Claimed 09.03.2006; Published 25.03.2010, Bulletin No. 6. 4 p.: il.
6. Gutovsky M. V. Reference Book on Designing and Calculation of Aviation Electric Equipment Elements / М. V. Gutovsky, V. F. Korshunov. М., 1962. 165 p.
7. Mathematic Modeling of Liquid Rocket Engines Working Process / Е. N Belyayev, V. K. Chvanov, V. V. Chervakov; Under the editorship of V. K. Chvanov. М., 1999. 228 p.
Downloads: 36
Abstract views: 
525
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Los Angeles; North Bergen; Boydton; Ashburn; Columbus; Phoenix; Phoenix; Phoenix; Ashburn; Seattle; Seattle; Ashburn; Seattle; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro; Dnipro2
Unknown Sidney1
Canada Toronto1
Germany Falkenstein1
Romania Voluntari1
14.1.2017 Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve
14.1.2017 Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve
14.1.2017 Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve
]]>