Search Results for “engine development test” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 13:02:58 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “engine development test” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 19.1.2020 Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO https://journal.yuzhnoye.com/content_2020_1-en/annot_19_1_2020-en/ Wed, 13 Sep 2023 12:02:02 +0000 https://journal.yuzhnoye.com/?page_id=31074
Pyrobolts: types, design, development. Owing to the simple design, reliability and short action time, the pyrobolts have found wide application in aerospace engineering for separation of assemblies and bays, in particular, stages, head modules, launching boosters, etc. A Manual for Pyrotechnic Design, Development and Qualification: NASA Technical Memorandum 110172. (2020) "Pyrobolts: types, design, development. "Pyrobolts: types, design, development. quot;Pyrobolts: types, design, development. Pyrobolts: types, design, development.
Not found: test
]]>

19. Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 170-176

DOI: https://doi.org/10.33136/stma2020.01.170

Language: Russian

Annotation: The pyrobolts, or explosive bolts, belong to the pyrotechnical devices with monolithic case consisting o f the cap, as a rule with hexagonal surface, and of cylindrical part with thread. The pyrobolts are separated into parts using the pyrotechnical charge placed inside the case. Owing to the simple design, reliability and short action time, the pyrobolts have found wide application in aerospace engineering for separation of assemblies and bays, in particular, stages, head modules, launching boosters, etc. So, for example, about 400 pyrobolts are used in the Proton launch vehicle. The designs of pyrobolts are markedly different. By method of explosive substance action on case structural elements, the pyrobolts are divided into two types: the pyrobolts using the shock wave formed at detonation of brisant explosive substance for case wall destruction and the pyrobolts using the pressure of gases arising at pyrotechnical charge blasting. By method of separation into parts, they are divided into fragmenting pyrobolts with ridge-cut, with piston, and shear pyrobolts. The paper deals with the design of various types of pyrobolts, their disadvantages are considered. The Yuzhnoye SDO-developed pyrobolt of shear type with segments is presented that uses radial shear forces of segments located in the hole of cylindrical part to separate the case parts. The above segments a re actuated using a rod with sealing rings and a piston connected to the rod through a rubber gasket; the piston moves under pressure of gases formed during pyro cartridge action. The following calculations are presen ted: strength analyses with determination of case load-carrying capacity; power analyses with justification of pyro cartridge selection for pyrobolt actuation. In the developed pyrobolt of shear type with segments, the case parts are separated without considerable shock loads and without high-temperature gases and fragments release into environment, ensuring reliable separation of bays and assemblies without damaging sensitive equipment.

Key words: explosive bolt, shock wave, brisant explosive substance, pyro cartridge, electric igniting fuse, high-temperature gases

Bibliography:
1. Mashinostroenie. Entsiklopediia / А. P. Adzhian i dr.; pod red. V. P. Legostaeva. М., 2012. Т. IV-22. V 2-kh kn. Kn. 1. 925 s.
2. Bement L. J., Schimmel M. L. A Manual for Pyrotechnic Design, Development and Qualification: NASA Technical Memorandum 110172. 1995.
3. Yumashev L. P. Ustroistvo raket-nositelei (vspomagatelnye sistemy): ucheb. posob. Samara, 1999. 190 s.
4. Lee J., Han J.-H., Lee Y., Lee H. Separation characteristics study of ridge-cut explosive bolts. Aerospace Science and Technology. 2014. Vol. 39. Р. 153-168. https://doi.org/10.1016/j.ast.2014.08.016
5. Yanhua L., Jingcheng W., Shihui X., Li C., Yuquan W., Zhiliang L. Numerical Study of Separation Characteristics of Piston-Type Explosive Bolt. Shock and Vibration. https://doi.org/10.1155/2019/2092796
6. Yanhua L., Yuan L., Xiaogan L., Yuquan W., Huina M., Zhiliang L. Identification of Pyrotechnic Shock Sources for Shear Type Explosive Bolt. Shock and Vibration. https://doi.org/10.1155/2017/3846236
Downloads: 20
Abstract views: 
956
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Ashburn; Seattle; Portland; San Mateo; San Mateo; San Mateo; Ashburn13
Singapore Singapore; Singapore; Singapore; Singapore4
India1
Indonesia1
Ukraine Dnipro1
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO

Keywords cloud

]]>
18.1.2020 Development of autonomous power engineering systems with hydrogen energy storage https://journal.yuzhnoye.com/content_2020_1-en/annot_18_1_2020-en/ Wed, 13 Sep 2023 11:57:42 +0000 https://journal.yuzhnoye.com/?page_id=31056
Development of autonomous power engineering systems with hydrogen energy storage Authors: Shevchenko A. (2020) "Development of autonomous power engineering systems with hydrogen energy storage" Космическая техника. "Development of autonomous power engineering systems with hydrogen energy storage" Космическая техника. quot;Development of autonomous power engineering systems with hydrogen energy storage", Космическая техника. Development of autonomous power engineering systems with hydrogen energy storage Автори: Shevchenko A. Development of autonomous power engineering systems with hydrogen energy storage Автори: Shevchenko A.
Not found: test
]]>

18. Development of autonomous power engineering systems with hydrogen energy storage

Organization:

Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 160-169

DOI: https://doi.org/10.33136/stma2020.01.160

Language: Russian

Annotation: The article analyzes the energy potential of alternative sources of Ukraine. The projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling automobile vehicles located in areas with high solar radiation potential, are considered. During the operation of water desalination plants using a solar power station as an energy source, contingencies are very likely to arise due to either a power outage (due to cloudy weather) or an emergency failure of individual elements of the system. In this case, it is required to ensure its removal from service without loss of technological capabilities (operability). For this purpose, it is necessary to provide for the inclusion in the technological scheme of the energy technological complex of an additional element that ensures operation of the unit for a given time, determined by the regulations for its operation. As such an element, a buffer system based on a hydrogen energy storage device is proposed. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. N. Podgorny of the National Academy of Sciences of Ukraine allows producing and accumulating the hydrogen under high pressure, which eliminates the use of compressor technology.

Key words: alternative energy sources, hydrogen, solar energy, hydrogen generator

Bibliography:
1. Syvolapov V. Potentsial vidnovliuvanykh dzherel enerhii v Ukraini. Agroexpert. 2016. № 12 (101). S. 74–77.
2. Züttel A., Remhof A., Borgschulte A., Friedrichs O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. № 368(1923). Р. 3329–3342. https://doi.org/10.1098/rsta.2010.0113
3. Vozobnovliaemaia energetika. URL: https://nv.ua/tags/vozobnovljaemaja-enerhetika.htmt (access date: 27.01.2020).
4. Sherif S. A., Barbir F., Veziroglu T. N. Wind energy and the hydrogen economy-review of the technology. Solar energy. 2005. № 78(5). P. 647–660. https://doi.org/10.1016/j.solener.2005.01.002
5. Schlapbach L. Technology: Hydrogen-fuelled vehicles. Nature. 2009. № 460(7257). P. 809. https://doi.org/10.1038/460809a
6. Shevchenko A. A., Zipunnikov M. М., Kotenko А. L., Vorobiova I. O., Semykin V. M. Study of the Influence of Operating Conditions on High Pressure Electrolyzer Efficiency. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 53–60. https://doi.org/10.15407/pmach2019.04.053
7. Clarke R. E., Giddey S., Ciacchi F. T., Badwal S. P. S., Paul B., Andrews J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy. 2009. № 34(6). P. 2531–2542. https://doi.org/10.1016/j.ijhydene.2009.01.053
8. Kunusch C., Puleston P. F., Mayosky M. A., Riera J. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Transactions on Control Systems Technology. 2009. № 17(1). P. 167–174. https://doi.org/10.1109/TCST.2008.922504
9. Mazloomi K., Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012. № 16. P. 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028
10. Sharma S., Ghoshal S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015. № 43. P. 1151–1158. https://doi.org/10.1016/j.rser.2014.11.093
11. Prystrii dlia oderzhannia vodniu vysokoho tysku: pat. 103681 Ukraina: MPK6 S 25V 1/12 / V. V. Solovey, A. A. Shevchenko, A. L. Kotenko, O. О. Makarov (Ukrajina). № 2011 15332; zajavl. 26.12.2011; opubl. 10.07.2013, Biul. № 21. 4 s.
12. Shevchenko А. А. Ispolzovanie ELAELov v avtonomnykh energoustanovkakh, kharakterizuyushchikhsia neravnomernostju energopostupleniia. Aviatsionno-kosmicheskaia tekhnika i technologiia: sb. nauch. tr. 1999. Vyp. 13. S. 111–116.
13. Solovey V. V., Zhirov А. S., Shevchenko А. А. Vliianie rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniia. Sovershenstvovaniie turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniia: sb. nauch. tr. 2003. S. 250–254.
14. Solovey V., Kozak L., Shevchenko A., Zipunnikov M., Campbell R., Seamon F. Hydrogen technology of energy storage making use of windpower potential. Problemy Mashinostroyeniya. Journal of Mechanical Engineering. 2017. Vol. 20, № 1. P. 62–68. https://doi.org/10.17721/fujcV6I2P73-79
15. Solovey V. V., Kotenko А. L., Vorobiova I. О., Shevchenko A. А., Zipunnikov M. М. Osnovnye printsipy raboty i algoritm upravleniya bezmembrannym elektrolizerom vysokogo davleniia. Problemy mashinostroyeniia. 2018. T. 21, №. 4. S. 57–63. https://doi.org/10.15407/pmach2018.04.057
16. Solovey V., Khiem N. T., Zipunnikov M. M., Shevchenko A. A. Improvement of the Membraneless Electrolysis Technology for Hydrogen and Oxygen Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 2. P. 73–79. https://doi.org/10.17721/fujcV6I2P73-79
17. Solovey V., Zipunnikov N., Shevchenko A., Vorobjova I., Kotenko A. Energy Effective Membrane-less Technology for High Pressure Hydrogen Electro-chemical Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 1. P.151–156. https://doi.org/10.17721/fujcV6I1P151-156
18. Solovey V. V., Zipunnikov М. М., Shevchenko А. А., Vorobiova І. О., Semykin V. M. Bezmembrannyi henerator vodniu vysokoho tysku. Fundamentalni aspekty vidnovliuvano-vodnevoi enerhetyky i palyvno-komirchanykh technologij / za zahal. red. Yu. М. Solonina. Kyiv, 2018. S. 99–107.
19. Matsevytyi Yu. M., Chorna N. A., Shevchenko A. A. Development of a Perspective Metal Hydride Energy Accumulation System Based on Fuel Cells for Wind Energetics. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 48–52. https://doi.org/10.15407/pmach2019.04.048
20. Phillips R., Edwards A., Rome B., Jones D. R., Dunnill C. W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy. 2017. № 42. P. 23986–23994. https://doi.org/10.1016/j.ijhydene.2017.07.184
Downloads: 18
Abstract views: 
733
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Boardman11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
16.1.2020 Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations https://journal.yuzhnoye.com/content_2020_1-en/annot_16_1_2020-en/ Wed, 13 Sep 2023 11:18:27 +0000 https://journal.yuzhnoye.com/?page_id=31052
However, full-scale testing is expensive and significantly increases the development time of the complex. The presented work contains simulation of liquid rocket engine combustion products jet flowing into the gas duct at the rocket lift-off, taking into account the following input data: the parameters of propulsion system, geometric parameters of launch complex elements, propulsion systems nozzles and gas duct.
]]>

16. Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 149-154

DOI: https://doi.org/10.33136/stma2020.01.149

Language: Russian

Annotation: Launch vehicle lift-off is one of the most critical phases of the whole mission requiring special technical solutions to ensure trouble-free and reliable launch. A source of increased risk is the intense thermal and pressure impact of rocket propulsion jet on launch complex elements and on rocket itself. The most accurate parameters of this impact can be obtained during bench tests, which are necessary to confirm the operability of the structure, as well as to clarify the parameters and configuration of the equipment and systems of complex. However, full-scale testing is expensive and significantly increases the development time of the complex. Therefore, a numerical simulation of processes is quite helpful in the design of launch complexes. The presented work contains simulation of liquid rocket engine combustion products jet flowing into the gas duct at the rocket lift-off, taking into account the following input data: the parameters of propulsion system, geometric parameters of launch complex elements, propulsion systems nozzles and gas duct. A three-dimensional geometric model of the launch complex, including rocket and gasduct, was constructed. The thermodynamic parameters of gas in the engine nozzle were verified using NASA CEA code and ANSYS Fluent. When simulating a multicomponent jet, the equations of conservation of mass, energy, and motion were solved taking into account chemical kinetics. The three-dimensional problem was solved in ANSYS Fluent in steady-state approach, using Pressure-based solver and RANS k-omega SST turbulence model. The calculation results are the gas-dynamic and thermodynamic parameters of jets, as well as distribution of gas-dynamic parameters at nozzle exit, in flow and in boundary layer at gas duct surface. The methodology applied in this work makes it possible to qualitatively evaluate the gas-dynamic effect of combustion products jets on gas duct for subsequent optimization of its design.

Key words: liquid rocket engine, combustion products, multicomponent flow, ANSYS Fluent

Bibliography:
1. Bonnie J. McBride, Sanford Gordon. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. II. Users Manual and Program Descriptions: NASA Reference Publication 1311. 1996.
2. Ten-See Wang. Thermophysics Characterization of Kerosene Combustion. Journal of Thermophysics and Heat Transfer. 2001. № 2, Vol. 15. P. 140–147. https://doi.org/10.2514/2.6602
3. Maas U., Warnatz J. Ignition Processes in Carbon-Monoxide-Hydrogen-Oxygen Mixtures: Twenty-Second Symposium (International) on Combustion. The Combustion Institute, 1988. P. 1695–1704. https://doi.org/10.1016/S0082-0784(89)80182-1
4. Timoshenko V. I. Teoreticheskiie osnovy tekhnicheskoj gazovoj dinamiki. Kiev, 2013. S. 154–155.
Downloads: 14
Abstract views: 
638
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Portland; Ashburn; Boardman9
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro1
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Test and launch control technology for launch vehicles. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles.
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 19
Abstract views: 
1072
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Dublin; Monroe; Ashburn; Ashburn; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Odessa; Dnipro2
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
8.2.2018 Development of Nozzle Blocks New Manufacturing Technology without Blazing https://journal.yuzhnoye.com/content_2018_2-en/annot_8_2_2018-en/ Thu, 07 Sep 2023 11:21:51 +0000 https://journal.yuzhnoye.com/?page_id=30757
Development of Nozzle Blocks New Manufacturing Technology without Blazing Authors: Kovalenko A. The step-by-step sequence and procedure of research work to develop and test a new technology of cooled nozzle block manufacturing are described. The test samples manufactured confirmed the high strength characteristics, which had been preliminary obtained by the theoretical calculation methods. Key words: liquid rocket engine nozzles , laser , laser welding , laser surfacing Bibliography: Full text (PDF) || (2018) "Development of Nozzle Blocks New Manufacturing Technology without Blazing" Космическая техника. "Development of Nozzle Blocks New Manufacturing Technology without Blazing" Космическая техника. liquid rocket engine nozzles , laser , laser welding , laser surfacing .
]]>

8. Development of Nozzle Blocks New Manufacturing Technology without Blazing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; STC «Paton Welding Institute», Kiev, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 68-75

DOI: https://doi.org/10.33136/stma2018.02.068

Language: Russian

Annotation: The article describes the problems of manufacturing large-size nozzle blocks by classical for Ukrainian space industry method of high-temperature brazing. The Yuzhnoye SDO-selected way of solving this problem and the first strides on the way to organization of new production using innovative technologies of laser welding and surfacing are presented. The step-by-step sequence and procedure of research work to develop and test a new technology of cooled nozzle block manufacturing are described. Four phases are identified, out of which the first two phases have already been successfully performed. The laser welding and surfacing technology will allow avoiding the use of costly and unique equipment and will allow reducing and optimizing the technological manufacturing cycle rejecting the long –term and energy-consuming technological operations. The scientific-and-technological works performed showed the principle feasibility of making connection between the external jacket and internal wall of a nozzle block using laser welding. The test samples manufactured confirmed the high strength characteristics, which had been preliminary obtained by the theoretical calculation methods. The sections obtained by surfacing demonstrate good metallurgical connection between the layers. On the test samples, the technique was tried-out allowing repairing defect areas in a welded seam obtained by laser welding method. This is especially important from the technological and economic viewpoints, as the technology of high-temperature brazing applied currently does not allow making guaranteed repair of brazed joints.

Key words: liquid rocket engine nozzles, laser, laser welding, laser surfacing

Bibliography:
Downloads: 15
Abstract views: 
450
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Columbus; Ashburn; Seattle; Portland; Ashburn9
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro1
8.2.2018 Development of Nozzle Blocks New Manufacturing Technology without Blazing
8.2.2018 Development of Nozzle Blocks New Manufacturing Technology without Blazing
8.2.2018 Development of Nozzle Blocks New Manufacturing Technology without Blazing

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4 https://journal.yuzhnoye.com/content_2018_2-en/annot_4_2_2018-en/ Thu, 07 Sep 2023 10:54:18 +0000 https://journal.yuzhnoye.com/?page_id=30735
Both earlier developments of DO and the turbopump unit being now in final testing phase are considered. Having analyzed the data presented, one may conclude that the Rocket Engines Design Office and Yuzhnoye SDO as a whole accumulated sufficient experience and knowledge allowing solving any problems that may arise when developing a new LRE turbopump unit, and successfully operating LRE with turbopump units, including those in the engines with generator gas afterburning created in recent years testify to a great value of accumulated experience.
]]>

4. Turbopump Units of Rocket Engines Developed by DO-4

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 25-33

DOI: https://doi.org/10.33136/stma2018.02.025

Language: Russian

Annotation: The article presents the experience of creating LRE turbopump units by the Rocket Engines Design Office (DO-4) at Yuzhnoye SDO. The best known turbopump units designs developed by DO are described. Both earlier developments of DO and the turbopump unit being now in final testing phase are considered. The design evolution of both separate assemblies and of entire unit is shown. The design evolution allowed increasing the unit’s lifetime dozens times. For example, the lifetime of the first turbopump units developed by DO did not exceed 150 s. Currently, the DO has in stock the engines with lifetime of ~19000 s. The information is presented on the problems that the designers faced in testing the turbopumop unit and the ways to solve them. The unique achievement are presented. At present, there are no analogs of some units in the world. The article presents the information on the latest achievements of DO, such as the face seal on pump vane discs whose use fully excludes unwanted leaks. Having analyzed the data presented, one may conclude that the Rocket Engines Design Office and Yuzhnoye SDO as a whole accumulated sufficient experience and knowledge allowing solving any problems that may arise when developing a new LRE turbopump unit, and successfully operating LRE with turbopump units, including those in the engines with generator gas afterburning created in recent years testify to a great value of accumulated experience.

Key words: liquid rocket engine, turbopump unit, pump, turbine

Bibliography:
1. Centrifugal Pump: Patent 1021816 А, USSR: MPK 7F04D1/00, 7F04D29/04 / Ivanov Y. N., Steblovtsev A. A.; Applicant and patent holder Yuzhnoye State Design Office. No. 3313928/25-06; claimed 06.07.1983, published 07.06.1984.
2. Auger-Centrifugal Pump: Patent 73783, Ukraine: MPK 7F04D29/66 / Ivanov Y. N., Pilipenko V. V., Zadontsev V. A., Drozd V. A.; Applicant and patent holder Yuzhnoye State Design Office. No. 2003021144; claimed 07.02.2003, published 15.09.2005.
3. End Seal. Patent 61082, Ukraine: MPK 7F16J15/34 / Ivanov Y. N., Chetverikova I. M.; Applicant and patent holder Yuzhnoye State Design Office. No. 990311536; claimed 19.03.1999, published 17.11.2003.
4. End Seal of High-Speed Shaft: Patent 48248, Ukraine: MPK F16J15/54, F04D29/10 / Ivanov Y. N., Steblovtsev A. A., Gameberger Y. A., Peredarenko V. M.; Applicant and patent holder Yuzhnoye State Design Office. No. 99031442; claimed 16.03.1999, published 15.08.2002.
5. Centrifugal Pump. Patent 84023, Ukraine: MPK F04D1/00 / Ivanov Y. N., Ivchenko L. F., Deshevykh S. A., Dan’kevich D. S.; Applicant and patent holder Yuzhnoye State Design Office. No. а200601399; claimed 13.02.2006, published 10.09.2008.
Downloads: 20
Abstract views: 
243
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; San Antonio; Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Portland; San Mateo; Boardman; Ashburn14
Singapore Singapore; Singapore; Singapore; Singapore4
The Republic of Korea Daejeon1
Ukraine Dnipro1
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
3.2.2018 Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly https://journal.yuzhnoye.com/content_2018_2-en/annot_3_2_2018-en/ Thu, 07 Sep 2023 08:42:19 +0000 https://journal.yuzhnoye.com/?page_id=30733
This LRE has a combination of attractive characteristics, such as high specific pulse, low mass, multiple ignitions in flight, high reliability confirmed by good results of flight test of the prototype engines. With consideration for the experience of prototype engines testing, we should note the following ways of main engine assembly modernization: – Besides, the information is presented on RD859, RD864, RD866 and RD869 prototype engines, the data on their basic characteristics, testing and operation. Development status and improvement methods for upper stage engines of Vega and Cyclone launch vehicles.
]]>

3. Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 16-24

DOI: https://doi.org/10.33136/stma2018.02.016

Language: Russian

Annotation: The Ukrainian companies Yuzhnoye SDO and SE PA YMZ supply VG143 main engine assembly for Vega LV AVUM upper stage, which is a one-chamber LRE of 250 kg thrust with five ignitions in flight. By the present, 11 successful launches of Vega LV have been made. In the process of flight operation, there were no critical comments on engines operation. This LRE has a combination of attractive characteristics, such as high specific pulse, low mass, multiple ignitions in flight, high reliability confirmed by good results of flight test of the prototype engines. The reserve of this engine from the viewpoint of further modernization is far from being exhausted. Enhancing the capabilities of payload injection by launch vehicles into various orbits of artificial Earth satellites is the main task for the developers of ILV as a whole and for the developers of separate assemblies and systems, such as LRE being part of ILV. With consideration for the experience of prototype engines testing, we should note the following ways of main engine assembly modernization: – increasing the specific pulse due to the increase of nozzle expansion ratio; – decreasing the volume of internal manifolds and mass of chamber; – increasing the operation time; – increasing the ignitions number; – increasing the duration of pauses between ignitions and orbital functioning time. Increasing the thrust and specific pulse of Vega LV VG143 main engine assembly and AVUM stage takes place due to the use of pneumopump propellant feeding system instead of standard pressure feeding. Besides, the information is presented on RD859, RD864, RD866 and RD869 prototype engines, the data on their basic characteristics, testing and operation. The below information is of interest to LRE and LV developers.

Key words: main engine assembly, liquid rocket engine, ways of modernization, engine chamber

Bibliography:
1. Shnyakin V., Shul’ga V., Zhivotov A., Dibrivny A. Creating a new generation of space-craft liquid rocket engines basing on pneumopump propellant supply systems. Space Propulsion: International Conference. France, Bordeaux. 2012.
2. Shul’ga V. Development status and improvement methods for upper stage engines of Vega and Cyclone launch vehicles. Space Propulsion; International Conference. Germany, Cologne. 2014.
3. De Rose L., Parmigiani P., Shnyakin V., Shulga V., Pereverzyev V., Caramelli F. Main engine of the Vega fourth stage: characteristics and heritage. 4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion”. Netherlands, Noordwijk. 2018.
4. Kovalenko A. N., Pereverzev V. G., Marchan R. A., Blishun Y. V. Experimental Confirmation of Feasibility of Improving Power-Mass Characteristics of LRE for Vega Launch Vehicle Upper Stage: Paper presentation at the International Scientific-Technical Conference. S. P. Korolev SGAU, 2014.
Downloads: 16
Abstract views: 
625
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Columbus; Ashburn; Seattle; San Mateo; Boardman; Ashburn11
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro1
3.2.2018 Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly
3.2.2018 Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly
3.2.2018 Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
2.2.2018 Yuzhnoye SDO-Developed Upper Stage Liquid Rocket Engines https://journal.yuzhnoye.com/content_2018_2-en/annot_2_2_2018-en/ Thu, 07 Sep 2023 08:39:40 +0000 https://journal.yuzhnoye.com/?page_id=30729
Key words: main engine , engine development test , takeoff-and-landing module , pneumatic pump unit Bibliography: 1. main engine , engine development test , takeoff-and-landing module , pneumatic pump unit .
]]>

2. Yuzhnoye SDO-Developed Upper Stage Liquid Rocket Engines

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 8-15

DOI: https://doi.org/10.33136/stma2018.02.008

Language: Russian

Annotation: One of the important directions in the development of Yuzhnoye SDO liquid rocket engines is creation of the engines for launch vehicle upper stages, boosters, space tugs and takeoff-and-landing vehicles. The article presents an overview of Yuzhnoye SDO – developed liquid rocket engines, their basic characteristics, distinctive features and the current status of development and operation. The article presents the information on the following engines: RD858 and RD859 operating on storable propellants, for lunar takeoff-and-landing Block E module; RD809M and RD809K operating on liquid oxygen + kerosene created on the basis of RD8 serial control engine of Zenit launch vehicle second stage. In this case, RD809M engine is RD8 version with tight integration and RD809K engine is its one-chamber version; RD805 engine operating on liquid oxygen + kerosene created on the basis of combustion chamber of RD8 serial control engine of Zenit launch vehicle second stage.; RD835 engine operating on liquid oxygen + kerosene created for the second stages of launch vehicles of Mayak type; the engines and propulsion systems operating on storable propellants, such as RD861K (main engine of Cyclone-4 third stage and Cyclone-4M launch vehicle second stage), DU802 (liquid propulsion system of Krechet autonomous space tug of conversion Dnepr launch vehicle), RD840 (apogee liquid rocket engine of liquid propulsion system of geostationary communication satellite bus), VG143 (main engine assembly of the fourth stage of European Vega launch vehicle), RD864 and RD869 (main engines of Dnepr launch vehicle upper stages). The information presented in the article is of interest to liquid rocket engines and launch vehicles developers.

Key words: main engine, engine development test, takeoff-and-landing module, pneumatic pump unit

Bibliography:
1. Liquid Rocket Engines, Propulsion Systems, Onboard Power Sources Developed by Propulsion Systems Design Office of Yuzhnoye SDO / Under scientific editorship of S. N. Konyukhov, Academician of NAS of Ukraine, V. N. Shnyakin, Candidate of Engineering Science. Dnepropetrovsk, 2008. 466 p.
2. Liquid Rocket Engines. Description and Basic Technical Data / Under scientific editorship of S. N. Konyukhov, Academician of NAS of Ukraine, V. N. Shnyakin, Candidate of Engineering Science. Dnepropetrovsk, 1996. 84 p.
3. Prokopchuk A. A. et al. New Possibilities for Creation of Apogee Propulsion Systems with Pneumopump Propellant Supply System. Paper presentation at Conference “Space Propulsion”, 2018, Spain.
4. Shnyakin V. N., Shulga V. A., Dibrivny A. V. Possibilities of Creating New LRE Based on Mature Technologies. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2011. Issue 2. P. 61-71.
Downloads: 18
Abstract views: 
203
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Lviv; Dnipro2
2.2.2018 Yuzhnoye SDO-Developed Upper Stage Liquid Rocket Engines
2.2.2018 Yuzhnoye SDO-Developed Upper Stage Liquid Rocket Engines
2.2.2018 Yuzhnoye SDO-Developed Upper Stage Liquid Rocket Engines

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
1.2.2018 Design Office of Liquid Rocket Engines is 60 https://journal.yuzhnoye.com/content_2018_2-en/annot_1_2_2018-en/ Thu, 07 Sep 2023 08:19:39 +0000 https://journal.yuzhnoye.com/?page_id=30723
2018 (2); 3-7 DOI: https://doi.org/10.33136/stma2018.02.003 Language: Russian Annotation: During 60 years of existence of specialized Liquid Rocket Engines Design Office – DO-4 as a part of Yuzhnoye Design Office, extensive experience was accumulated in development of liquid rocket engines of various purpose on storable and cryogenic propellant components. When developing the engines, the DO-4 specialists widely use the experience accumulated during manufacturing and testing of the engines developed by the other design offices for Yuzhnoye SDO LVs that were manufactured by SE PA Yuzhny Machine-Building Plant and tested at Yuzhnoye SDO’s and Plant’s test benches. Key words: liquid rocket engine , developed engines , testing , Yuzhnoye SDO , accumulated experience Bibliography: 1. liquid rocket engine , developed engines , testing , Yuzhnoye SDO , accumulated experience .
]]>

1. Design Office of Liquid Rocket Engines is 60

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 3-7

DOI: https://doi.org/10.33136/stma2018.02.003

Language: Russian

Annotation: During 60 years of existence of specialized Liquid Rocket Engines Design Office – DO-4 as a part of Yuzhnoye Design Office, extensive experience was accumulated in development of liquid rocket engines of various purpose on storable and cryogenic propellant components. The required test benches and production base were created. When developing the engines, the DO-4 specialists widely use the experience accumulated during manufacturing and testing of the engines developed by the other design offices for Yuzhnoye SDO LVs that were manufactured by SE PA Yuzhny Machine-Building Plant and tested at Yuzhnoye SDO’s and Plant’s test benches. Along with the conventional ones, new original engine designs were developed to achieve high energy-mass characteristics, reliability and quality. Among them we should mention the RD858 and RD859 engines for the soviet lunar take-off-and –landing module of Block E, the unique RD857 and RD862 engines with afterburning of reducing generator gas and gas dynamic method of thrust vector control, the RD866 multifunctional engine of space tug ensuring multiple ignition in flight, and many others. At present, Yuzhnoye SDO jointly with SE PA Yuzhny Machine-Building Plant deliver the engine for the European Vega LV forth stage propulsion system under the contract with Avio company (Italy). Based on Yuzhnoye SDO–created engines, propulsions systems for ballistic missiles and space rockets that are unique by their characteristics and scope of functions, the engines, propulsions systems for spacecraft, LV upper stages and transfer orbit stages can be developed in short terms and at minimal costs.

Key words: liquid rocket engine, developed engines, testing, Yuzhnoye SDO, accumulated experience

Bibliography:
1. Liquid Rocket Engines, Propulsion Systems, Onboard Power Sources Developed by Propulsion Systems Design Office of Yuzhnoye SDO / Under scientific editorship of S. N. Konyukhov, Academician of NAS of Ukraine, V. N. Shnyakin, Candidate of Engineering Science. Dnepropetrovsk, 2008. 466 p.
2. Shnyakin V. N., Shulga V. A., Dibrivny A. V. Possibilities of Creating New LRE Based on Mature Technologies. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2011. Issue 2. P. 61-71.
Downloads: 19
Abstract views: 
98
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
1.2.2018 Design Office of Liquid Rocket Engines is 60
1.2.2018 Design Office of Liquid Rocket Engines is 60
1.2.2018 Design Office of Liquid Rocket Engines is 60

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems https://journal.yuzhnoye.com/content_2018_1-en/annot_11_1_2018-en/ Tue, 05 Sep 2023 06:50:56 +0000 https://journal.yuzhnoye.com/?page_id=30466
Development of Technique of Alkaline Nickel-Cadmium Accumulators Recovery to Prolong their Service Life. Electrical and Electronic Engineering. Development and Approbation of Mathematical Model to Predict the Characteristics of Electrochemical Accumulators of Space Rocketry Power Systems.
Not found: test
]]>

11. Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Kharkiv Aviation Institute, Kharkiv, Ukraine2 .

Page: Kosm. teh. Raket. vooruž. 2018 (1); 63-68

DOI: https://doi.org/10.33136/stma2018.01.063

Language: Russian

Annotation: Several measures to ensure long service life of electrochemical batteries are proposed: electrochemical battery performance evaluation, study of theoretical basis for improvement and building of experimental bench equipment.

Key words:

Bibliography:
1. Davidov А. О. Development of Technique of Alkaline Nickel-Cadmium Accumulators Recovery to Prolong their Service Life. Aerospace Hardware and Technology. 2009. No. 8 (65). P. 132-137.
2. Bezruchko K. V., Vasilenko A. S., Davidov A. О., Kharchenko А. А. Recovery of Open-Type Nickel-Cadmium Accumulators Capacity by Acting on Active Mass of Oxide-Nickel Electrode. Problems and Chemistry and Chemical Technology. 2002. No. 2. P. 66-70.
3. Azarnov A. L. et al. Express-Diagnostics Technique for Electrochemical Accumulators. The ХII International Scientific-Practical Youth Conference “Man and Space”: Collection of abstracts. Dnepropetrovsk, 2010. P. 78.
4. Bezruchko K. V., Davidov A. O. Express-Diagnostics Method for Electrochemical Energy Storage Units of Space Rocketry Power Systems. Space Technologies: Present and Future: The III International Conference: Collection of Abstracts (Dnepropetrovsk, 20-22 April, 2011). Dnepropetrovsk, 2011. P. 5-6.
5. Bezruchko K. V., Davidov A. O., Sinchenko S. V. Pulse Diagnostics Method for Nickel-Cadmium Accumulators. The V Scientific–Technical Conference “Present-Day Problems of Space Rocketry and Space Technologies”: Collection of abstracts. Kharkiv, 2010. P. 13.
6. Bezruchko K. V., Davidov A. O., Katorgina J. G., Sinchenko S. V., Shirinsky S. V. Method of Predicting the Performance of Electrochemical Batteries Working during Long Time in Space Rocketry Power Systems. Electrical and Electronic Engineering. 2013. Vol. 3 (3). P. 81-85.
7. Bezruchko K. V. et al. Development and Approbation of Mathematical Model to Predict the Characteristics of Electrochemical Accumulators of Space Rocketry Power Systems. MAI News. 2013, Vol. 20, No. 1. P. 38-49.
Downloads: 18
Abstract views: 
400
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems
11.1.2018 Ensuring Long Lifetime of the Electrochemical Accumulators Included in Space Rocketry Electric Power Supply Systems
]]>